PRELIMINARY PHYTOCHEMICAL INVESTIGATION OF ANTIMICROBIAL AND ANTIOXIDATIVE SECONDARY METABOLITES FROM THE STEM EXTRACT OF *LEEA INDICA* (MEMALI)

MUHAMAD AZFAR BIN ABD JALIL

Final Year Project Report Submitter in Partial Fulfillment in the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences University Teknologi MARA

JANUARY 2016

ACKNOWLEDGEMENT

Praise to Allah S.W.T., the Almighty, for giving me the strength, blessing, mercy and guidance throughout my study as chemistry student. My thanks go to all lecturers and lab assistants as they gave an opportunity to learn something new in the chemistry field, give guidance throughout my study, and also for being patience with all my mistakes.

My special thanks goes to my supervisor, Dr. Aiza binti Harun and co-supervisor, Miss Suhaila binti Harith for all their advice and guided me to complete my thesis. I'm also want to thank my fellow friends, that I met along my study for helping in my study, especially Erlena Nor Asmira binti Abd Rahim and Nurul 'Atiqah binti Muhamad Rosdi, who were with me the entire time during my ups and downs while doing research.

Last but not least, my deepest gratitude goes to my parent, Abd Jalil bin Hassan and Faridah binti Md Akif, and also my siblings for their endless love, prayers, encouragement, and support. Not to mention those who indirectly helped me in completing my Final Year Project Thesis. Thank you very much.

Muhamad Azfar bin Abd Jalil

TABLE OF CONTENTS

		Page
AC	KNOWLEDGEMENTS	ii
TA	BLE OF CONTENTS	iii
LIS	T OF TABLES	vi
LIS	T OF FIGURES	vii
LIS	T OF ABBREVIATIONS	viii
ABS	STRACT	ix
ABS	STRAK	x
	APTER 1 INTRODUCTION	1
1.1 1.2	Background and problem statement Significance of study	1
1.3	Objective of study	33
1.4	Scope of study	3
СН	APTER 2 LITERATURE REVIEW	5
2.1	Phytochemicals/ Secondary Metabolites	5
	2.1.1 Alkaloids 2.1.2 Phenolics	6 7
	2.1.3 Tannins	7
	2.1.4 Terpenes	8
	2.1.5 Flavonoids	8
2.2	Family of <i>Leeaceae</i>	9 9
2.5	Antioxidant assay 2.3.1 DPPH radical scavenging activity	9 10
2.4	Antibacterial activity	10
	2.4.1 Disk diffusion technique	11
	2.4.2 TLC bioautography technique	12
CH	APTER 3METHODOLOGY	14
3.1	Materials	14
	3.1.1 Raw Materials	14
	3.1.2 Chemicals	14

3.1.2 Chemicals

3.2	Appar	ratus		16	
3.3	Methods				
	3.3.1 Preparation of materials			16	
	3.3.2	Preliminary phytochemicals screening tests		17	
		3.3.2.1	Test for alkaloids	17	
		3.3.2.2	Test for steroids and terpenoids	17	
		3.3.2.3	Test for tannins	18	
		3.3.2.4	Test for saponins	18	
		3.3.2.5	Test for glycosides	18	
		3.3.2.6	Test for flavonoids	19	
	3.3.3	FTIR ar	nalysis	19	
	3.3.4	Preparations of TLC phytochemicals screening		19	
		3.3.4.1	Preparing of TLC developing container	19	
		3.3.4.2	Preparing TLC plates	19	
		3.3.4.3	Applying sample on TLC plates	20	
		3.3.4.4	Developing the plates	20	
		3.3.4.5	Visualizing the plates	20	
		3.3.4.6	Spraying reagents preparations	20	
	3.3.5	Antioxidant assay		21	
		3.3.5.1	Screening of antioxidant compounds	21	
		3.3.5.2	Dot-blot assay	21	
	3.3.6	22			
		3.3.6.1	Preparing and developing TLC plates	22	
		3.3.6.2	Preparation of microbial inoculums	22	
		3.3.6.3	Disk diffusion assay	22	
		3.3.6.4	Preparing thin layer agar	23	
		3.3.6.5	Staining bioautogram	23	
CH	APTER	A RESI	ULTS AND DISCUSSION	24	
4.1					
4.2					
4.3	,				
				28	

reparation of extracts for TEC	20
4.3.1 TLC phytochemical screening	28
Antioxidant assay	32
4.4.1 Antioxidant TLC screening	32
4.4.2 Dot-blot assay	32
Antibacterial assay	35
4.5.1 Disk diffusion method	35
4.5.2 TLC bioautography	39
	Antioxidant assay 4.4.1 Antioxidant TLC screening 4.4.2 Dot-blot assay Antibacterial assay 4.5.1 Disk diffusion method

CHA	APTER 5 CONCLUSION AND RECOMMENDATIONS	42
5.1	Conclusion	42
5.2	Recommendations	42

ABSTRACT

Leea indica is one of the herbal medicine that widely used by the locals in Malaysia. The current study focused on antibacterial and antioxidant properties from three different stem extracts of L. indica. Disk diffusion and Thin Layer Chromatography (TLC) bioautography were used to determine the antibacterial activity while radical scavenging method by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) solution was applied for screening of antioxidant compound on TLC and semi-quantitative dotblot assay. The phytochemicals screening showed negative result for alkaloids test but positive results for other compounds such as glycosides, tannins, saponins, and steroids. The extracts that were separated by using TLC method were screened for phytochemicals but only methanol (MeOH) extract showed the presence of phenolic compound. The disk diffusion assay showed that dichloromethane (DCM) extract have the strongest antibacterial activity on both Staphyloccous aureus and Staphyloccocus epidermidis with 6.3 mm and 7.0 mm average inhibition zone respectively at 50 mg/mL extract compare to petroleum ether (PE) and MeOH extracts. The PE extract showed strong inhibition against S. epidermidis with 6.3 mm average inhibition zone at 25 mg/mL concentration. The results of TLC bioautography also agreed with disk diffusion assay as inhibition zone were observed in DCM extract after compounds had been separated. Antioxidant compounds were observed in all extracts as yellow spot appear on TLC plates after spraying with DPPH solution, but only MeOH extract showed the strongest antioxidant activity even after the extract were diluted until 0.19 mg/mL concentration. The stem extracts of L. indica showed potential in terms of antibacterial and antioxidant properties. DCM extract showed most potential in terms of antibacterial activity. The MeOH extract only showed potential in terms of antioxidant activity due to common phenolic compounds that had already been reported as strong radical scavengers.