
e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

71

AN IMPROVED RSA CRYPTOSYSTEM BASED ON THREAD AND CRT

 *Saheed Yakub Kayode1, Gbolagade Kazeem Alagbe2

1Department of Physical sciences
Al-Hikmah University, Ilorin, Nigeria.

2Department of Computer Science

Kwara State University, Malete.Nigeria

*Corresponding author’s email: yksaheed@alhikmah.edu.ng

Submission date: 15 July 2017 Accepted date: 30 Sept 2017 Published date: 30 Nov 2017

Abstract

This paper proposes an efficient approach to improve Rivest Shamir Adleman (RSA) algorithm using
parallel technique. RSA public-key cryptosystem has been the most popular and interesting security
technique for majority of applications such as internet protocols, secure internet acces and electronic
commerce. The main bottleneck of RSA algorithm is that they are slower compared to symmetric
cryptography key alternatives simply because of their foundation in modular arithmetic. Hence, how
to make a more efficient and faster implementation of Rivest Shamir Adleman algorithm (RSA) is a
great concern to researchers in the field of cryptography. In this paper, we propose a parallel
implementation technique using Chinese Remainder Theorem and thread on encryption and
decryption operation in RSA when files are to be encrypted and decrypted. Also, in our method, the
key size is extended from 1024 bits to 2048 bits in length to provide a good level of security, since
1024 bits key size is no more appropraiate for protecting data. We use a parallel technique that divides
RSA power process into seperate threads and employs the use of Chinese Remainder Theorem (CRT)
to decrease the time required for both encryption and decryption operation. Java programming
language is used to implement the algorithm. Experimental results indicate that as the thread level
increases, the encryption and decryption time, which is the most time consuming operation, decreases
which shows an improved speed of the RSA cryptosystem.The proposed implementation has a great
potential to effectively deal with the RSA algorithm slow speed.

Keywords: RSA; thread; CRT; key size; encryption; decryption;

1.0 INTRODUCTION

The necessity for a secured communication on the internet is more profound than ever, recognizing
the fact that the conduct of almost all business transactions and personal matters are carried out today
through computer networks (Saheed & Gbolagade, 2016). Also, the increase in the demand for secure
communications between different parties on the internet and use of electronic commerce have led to
more demand of high-speed and reliable security products (Liu, Ma, Tong & Cheng, 2004). RSA
stands for Ron Rivest, Shamir Adi and Adleman Leonard who are the inventors of the RSA cipher. It
is a type of public key cryptography algorithm which was first made public in the year 1987 and
which is the most popular, attractive and one of the widely used public key cryptography algorithm.
Before the encryption process, we need to generate the keys which are public keys and the other
known as private keys. A key usually uses very big prime number of 1024 bit keys which is about

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

72

300 digits long. The time it takes to factorize this number creates a high level security for this
algorithm; and it takes millions of years to crash. The length of key that is common recently is
1024.However, the longer the length of the key the more guaranteed is the security provided by the
RSA cryptosystem. As discussed in (Barker et al., 2007), the RSA cryptosystem with the range of
key size of 1024 bits neither provides nor guarantees a sufficient and strong security level between
years 2011 and 2019. Thus, the size of the key should be increased to 2048 or higher bits in length.
 RSA (Rivest, Shamir & Adleman, 1978) is the most popular, widely used and deployed asymmetric
public-key cryptosystem. It is used in securing web traffic and some wireless devices and email
(Saheed & Gbolagade, 2017a). RSA cryptosystem, encryption operation and decryption processes are
computationally expensive and heavy because their bases in modular exponentiation in very large
numbers are needed. Since RSA has its foundation in arithmetic modulo operation with big numbers,
its operation can be slow in a constrained environments. An example is when a web server is loaded
heavily; RSA decryption process substantially decreases the number of secure socket layer (SSL)
requests per second and is more than the computer server can deal with. The need for information
security has become more widespread to a greater extent during these days. Parallelization of public
key algorithms could be very useful for a high and reasonable level of security system and can save a
lot of computation time. If combined, the public key cryptosystem will be more efficient and effective
for those kinds of system. In this paper, we introduce a parallel architecture based on thread level to
improve the speed of RSA cryptosystem. The RSA public key algorithm has been used for many
years without any security compromise. Although, different numbers of asymmetric key cryptography
algorithms have been developed after RSA cryptosystem, it is still being used (Damrudi & Ithnin,
2013; Kayode & Alagbe, 2017b) and deployed in many applications. The justification is in its security
value and implementation ease. According to (Afolabi & Atanda, 2016), the RSA cryptosystem can
be used for public key encryption and digital signatures.

Recently, Saheed and Gbolagade (2017a) proposed an improved RSA algorithm based on residue
number system (RNS). In this paper, two optimizations are investigated to make the RSA
cryptosystem operation easy. Younis, Fadhil and Jawad (2016) proposed a review on the
parallelization of the RSA algorithm and Chinese Remainder Theorem to improve the decryption
process. Also, Asaduzzaman, Gummadi, and Waichal (2015) presented an approach to deal with the
RSA Decryption complexity. In this work, the effect of compute unified device architecture (CUDA)
and pthread on decryption in RSA is explored by homomorphic encryption. Saxena and Kapoor
(2014) suggested a novel Parallel RSA algorithm based on repeated square-and multiply method.
Other researchers who worked lately on RSA cryptosystem are Fan et al., (2010) Li et al., (2010), and
Liu et al., (2010).

The rest of this paper is organized as follows; section two discusses the methodology. Section three
highlights the system architecture and implementation, while in section four, the results are presented.

2.0 Material and methods

2.1 Proposed methodology

The RSA encryption/decryption process is applied into a parallelism form in order to reveal the
efficient way to implement the RSA cryptosystem algorithm. As for both the encryption and
decryption processes, the number of threads to be used in the process is selected in order to enhance
its speed. The Software application for the project is implemented using java programming
language;thereby, taking advantage of java’s extensive library of security classes under the
“java.security” package and the Cipher class under the “javax.crypto” package. The application is
implemented using four main classes, namely, PairGenerator, RSA, Worker and RSAAPP classes.

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

73

2.2 Parallel RSA implementation

The details of the parallel implementation are given in Figure 3.1, which include public class that
implements the algorithm.

2.3 Algorithm Procedure

Before the message, data or file is encoded or encrypted, the public key and private key should be
generated. This process is done between the user and the internet service provider.

Key generation steps:

2.3.1 Firstly, select two distinct prime numbers p and q. For the purpose of security, the integers p and
q have to be chosen randomly with the length in bit.

2.3.2. Secondly, compute n = p * q.

2.3.3. Then, find the Euler’s totient function, Ø(n) = (p-1) * (q-1).

2.3.4. Choose a random integer e, 1 < e < θ, such that the gcd (e, θ) = 1. Now, e is used as Public-
Key exponent (e).

2.3.5. Now, use the extended Euclidean algorithm to find d as follows: d = e-1(mod Ø(n)) that is, d is
the multiplicative inverse of e, such that ed ≡ 1 (mod θ).

2.3.6. d is the Private-key exponent, such that dx e = 1 mod Ø(n).

2.3.7. The Public Key is made up of modulus (n) and the public exponent (e) which is public. That is,
(e,n).

2.3.8. The Private Key is made up of modulus (n) and the private exponent (d), that is private
exponent, which must be kept secret that is, (d, n).

2.4 Encryption

Encryption means enciphering message, data, file or plain text into cipher text (file). The process step
is as follow:
2.4.1 Send the Public-Key to the receiver who wants to store the message, data or file with him or

her.

2.4.2 The user message, data or file is now matched to an integer value by using an agreed protocol
known as padding scheme.

2.4.3 The message, file or data is encrypted and the result of encryption is the cipher text (data) C
which is given as C = me (mod n).

2.4.4 This result of encryption which is known as the encrypted data is now stored.

2.5 Decryption

Decryption means deciphering the encrypted data, file or message to the original meassage or file.
The key size of the RSA cryptosystem decryption exponent (d) and modulus (n) is very significant;
simply because the complexity is dependent on it.

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

74

3.0 System Architecture and Implementation

Figure 3.1 System Architecture

Message
(Plaintext or Chipertext)

Divide the messsage

Sub message Sub message Sub message Sub message

Thread Thread Thread Thread

Each thread
implements an
encrypt or
decrypt process
on its own data

Each thread
implements an
encrypt or decrypt
process on its own
data

Each thread
implements an
encrypt or
decrypt process
on its own data

Each thread
implements an
encrypt or
decrypt process
on its own data

Check if the
thread completes
its task

Check if the
thread completes
its task

Check if the
thread completes
its task

Check if the
thread completes
its task

The result
(Plaintext or Chipertext)

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

75

4.0 Results and discussion

Figure 4.1 Generate key tab

The generate key in figure 4.1 provides the interface to generate both the public-key (n, e) and private
key (n, d). The public key (n, e) is to be transmitted to the user before the actual encryption can take
place and the private key (n, d) is to be used by the receiver to decrypt the enciphered message, data
or file.

4.1 Encrypt /Decrypt file Tab

As shown in the following figures 4.2 and 4.3, this tab allows the user to select a file and have it either
encrypted or decrypted depending on which radio button is selected. For encryption, the user is
expected to first browse and locate the file containing the public key which should have been created
from the "Generate Key Pairs" tab earlier.

For the decryption, the user is expected to provide the private key. The default filenames and folder
for the keys are automatically suggested; but the user can provide different ones.

The decryption is done on a previously encrypted file. For example, the encrypted file from figure 4.2
is in the input file field for decryption. Upon clicking the "Decrypt file" button, the original file is
decrypted back.

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

76

Figure 4.2 Encryption time of file size 2.25MB

Figure 4.3 Encryption time of file size 2.25MB

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

77

Figure 4.4 Decryption time of file size 2.25MB

Table 4.1 illustrates the time taken for both encryption stage and decryption process. It was observed
that as the thread level increases, the encryption and decryption, which is the most time consuming
operation, decreases.

Table 4.1 Encryption/decryption time of file size = 2.25MB

Thread Levels Encryption time(milliseconds) Decryption time (milliseconds)

Thread 1 6499 24117
Thread 2 3068 11825
Thread 3 2080 9905
Thread 4 1424 9081
Thread 5 1188 8797

Figure 4.5 Encryption and decryption time for the thread levels

Encryption
time(milliseconds)

Decryption time
(milliseconds)

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

78

5.0 Conclusion

This paper proposes a parallel implementation of RSA algorithm using thread architecture. Sequential
implementation has been reported in the literature but RSA algorithm implemented sequentially does
not provide sufficient speed. We propose a faster implementation of RSA algorithm in this paper
based on parallelism concept. The parallelism concept used is thread architecture which is
implemented using java programming language on a different number of threads. As the thread level
increases, the encryption and decryption times decrease and this shows an improved speed of the RSA
algorithm cryptosystem. RSA algorithm has been one of the successful asymmetric cryptographies. It
can be used to provide and gurantee security in web traffic, cloud and security products. Its limitation
is that it is very slow in a constrained environment. Therefore, in this paper, we provide a technique
using thread and Chinese Remainder theorem (CRT) to improve the speed of the RSA cryptosystem.
The future work will be to extend the thread level and observe if there would be a significant
difference in both encryption and decryption processes of the RSA cryptosystem.

References

Asaduzzaman, A., Gummadi, D., & Waichal, P. (2015, April). A promising parallel algorithm to

manage the RSA decryption complexity. In SoutheastCon 2015 (pp. 1-5). IEEE.

Afolabi, A.O. & Atanda, O.G. (2016). Comparative Analysis of Some Selected Cryptographic
 Algorithms. Computing, Information Systems, Development Informatics & Allied Research
 Journal. (Vol 7, No 2, pp 41-52).

Barker, E. B., Barker, W. C., Burr, W. E., Polk, W. T., & Smid, M. E. (2007). Sp 800-57.

recommendation for key management, part 1: General (revised).

Fan, W., Chen, X., & Li, X. (2010, November). Parallelization of RSA algorithm based on compute

unified device architecture. In Grid and Cooperative Computing (GCC), 2010 9th
International Conference on (pp. 174-178). IEEE.

Li, Y., Liu, Q., & Li, T. (2010, April). Design and implementation of an improved RSA algorithm. In

E-Health Networking, Digital Ecosystems and Technologies (EDT), 2010 International
Conference on (Vol. 1, pp. 390-393). IEEE.

Damrudi, M., & Ithnin, N. (2013). Parallel RSA encryption based on tree architecture. Journal of the

Chinese Institute of Engineers, 36(5), 658-666.

Younis, M. I., Fadhil, H. M., & Jawad, Z. N. (2016). Acceleration of the RSA Processes based on

Parallel Decomposition and Chinese RemainderTheorem. International Journal of
Application or Innovation in Engineering & Management. (Vol. 3, Issue 1, pp. 12-23).

Liu, Q., Ma, F., Tong, D., & Cheng, X. (2004, July). A regular parallel RSA processor. In Circuits

and Systems, 2004. MWSCAS'04. The 2004 47th Midwest Symposium on (Vol. 3, pp. iii-467).
IEEE.

Liu, Q., Li, Y., & Hao, L. (2010, August). On the design and implementation of an efficient RSA

variant. In Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International
Conference on (Vol. 3, pp. V3-533). IEEE.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM, 21(2), 120-126.

e-ISSN: 2289-6589

Volume 6 Issue 2 2017, 71-79
e-Academia Journal (http://journale-academiauitmt.uitm.edu.my/v2/index.php/home.html)
© Universiti Teknologi MARA Terengganu

79

Saheed, Y.K., and Gbolagade K.A., (2016). “Efficient Image Encryption based on the moduli set
 {2n-1, 2n, 2n+1}”.Al-Hikmah Journal of Pure & Applied Sciences Vol.3 (2016): 15-21.

Saheed Y. K., and Gbolagade K. A. (2017a). An Improved RSA algorithm based on Residue Number
 System. In: Proceedings of the 13th Nigeria Computer Society International Conference,
 2017.Vol. 28. Pp 86-91.

Kayode, S.Y., & Alagbe, G.K. (2017b). Efficient RSA Cryptosystem Decryption Based on Chinese
 Remainder Theorem and Strong Prime. Anale.SeriaInformatică. (Vol. XV, fasc. 2 – 2017,

pp.43-47).

Saxena, S., & Kapoor, B. (2014, February). An efficient parallel algorithm for secured data

communications using RSA public key cryptography method. In Advance Computing
Conference (IACC), 2014 IEEE International (pp. 850-854). IEEE

