PRODUCTION OF BIODIESEL FROM PALM OIL CATALYZED BY ALUMINA-SUPPORTED AND SILICA-SUPPORTED CATALYST

ROZAIMY BIN ABDUL RAHIM

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty Of Applied Sciences Universiti Teknologi Mara

JANUARY 2015

ACKNOWLEDGEMENT

Bissmillahirrahmanirrahim,

Alhamdulillah with the name of Allah the most gracious and merciful, whom with His willing giving me the strength and opportunity to complete my Final Year Project which is title Production of Biodiesel From Palm Oil Catalyzed by Alumina-Supported and Silica-Supported Catalyst.

Firstly, I would like to express my deepest thanks to, Mr.Zainal Kifli Bin Abdul Razak, as my supervisor that put his all effort in guiding me to complete my Final Year Project for two semester session March/September 2014. I also want to dedicate my warm thanks to my co-supervisor, Madam Siti Norhafiza Binti Khazaai for her aspiring guidance and friendly advice during the project work.

Also thanks to laboratory assistant for their cooperation.Deepest thanks and appreciation to my parents, family and course mate for their support and help from the beginning till the end. Last but not least, thanks to Universiti Teknologi Mara (UiTM) that provides me the facilities and instrument in order to complete my Final Year Project.

Rozaimy bin Abdul Rahim

TABLE OF CONTENT

P	a	g	e
-			-

ACKNOWLEDGEMENT	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significance study	4
1.4	Objective of study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Chemical composition of palm oil	6
2.2	Advantages of palm oil	8
2.3	Biodiesel	9
2.4	Homogeneous catalyst	11
2.5	Heterogeneous catalyst	13
2.6	Support material	16
2.7	Instrumentation	17
2.8	Acid values	18
2.9	Saponification value	19

CHAPTER 3 METHODOLOGY

3.1	Mater	ials and equipment	21
	3.1.1	Reagent and chemical	21
	3.1.2	Instrument	22
3.2	Exper	imental work	22
	3.2.1	Catalyst preparation	23
		3.2.1.1 Alumina supported on calcium oxide (CaO)	23

	3.2.1.2 Alumina supported potassium iodide (KI)	23
	3.2.1.3 Silica supported CaO	24
	3.2.1.4 Silica supported KI	24
	3.2.1.5 CaO from cockles shell	24
3.2.2	Transesterification process	24
	3.2.2.1 Alumina supported CaO and alumina supported	24
	KI	
	3.2.2.2 Silica supported CaO and silica supported KI	25
	3.2.2.3 Cockles shell	25
	3.2.2.4 Blank sample	26
3.2.3	GC-MS analysis	26
3.2.4	Standardization of alcoholic potassium hydroxide	27
	(KOH)	
3.2.5	Acid value	27
3.2.6	Standardization of hydrochloric acid	28
3.2.7	Saponification value	29

CHAPTER 4 RESULT AND DISCUSSION

4.1	Catalytic activities KI/Al ₂ O ₃ catalysts	30
4.2	Catalytic activities of CaO/Al ₂ O ₃ catalysts	32
4.3	Catalytic activities CaO/SiO2,KI/SiO2,cockles shell and	34
	blank sample	
4.4	Effect of support nature on basicity and catalyst	36
	performance	
4.5	Influence of support material	38
4.6	Fatty acid composition	39
4.7	Acid value and saponification value	44
СНА	PTER 5 CONCLUSION AND RECOMMENDATION	45
CITI	ED REFERENCES	47
APP	ENDICES	54
CUR	RICULUM VITAE	

ABSTRACT

PRODUCTION OF BIODIESEL FROM PALM OIL CATALYZED BY ALUMINA-SUPPORTED AND SILICA-SUPPORTED CATALYST

The main objectives of this study were to determine the conversion of palm oil into biodiesel by using a different type of catalyst. Transesterification of palm oil with methanol has been studied in a heterogeneous system using alumina loaded with calcium oxide and potassium iodide besides the silica loaded with calcium oxide and potassium iodide. Synthesize calcium oxide from cockles shell also has been studied under the similar system. The optimum amount of catalyst that is 5.0% gives the highest percent yield where 10.76% by using cockles shell as catalyst. The support material also showed that the alumina is much better compared to silica in order to enhance the catalytic activity. The types of fatty acid in palm oil were determined by using gas chromatographer-mass spectrometry (GC-MS). The fatty acid that determined was palmitic and oleic acid. The free fatty acid in palm oil was 6.65%, acid value was 7.32 (mg/g oil) and saponification value was 109.99 (mg/g KOH).