FRACTIONATION OF METHANOL EXTRACT FROM THE STEM OF ENTADA SPIRALIS RIDL USING VACUUM LIQUID CHROMATOGRAPHY AND ITS PRELIMINARY PHYTOCHEMICAL INVESTIGATION OF ACTIVE COMPONENTS

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2015

ACKNOWLEDGMENT

Bismillahirrahmanirrahim,

In the name of Allah, the Most Gracious and the Most Merciful, Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. I am using this opportunity to express my special appreciation and warm thanks to my lovely advisor Dr. Aiza Bt Harun, you have been a tremendous mentor for me. I would like to thank you for encouraging my research and for allowing me to grow as a good researcher. Your advice and guidance have been so priceless to me. I also want to thank you for letting my project be an enjoyable moment, and for your brilliant comments and suggestions, thanks to you. I would also like to thank my co—supervisors miss Siti Suhaila Bt Harith for their aspiring guidance, invaluably constructive criticism and friendly advice during the project work.

Furthermore I would also like to acknowledge with much appreciation the crucial role of the staff of laboratory assistance, who gave the permission to use all required equipment and the necessary material to complete the task en. Mohd Fauzi B. Idrus. A special thanks goes to my team mate, Mohd Ardyka B Yahya, who help me to assemble the parts and gave suggestion about the project.

A special thanks to my family. Words cannot express how grateful I am to my father, my mother, sisters and brothers for all of the sacrifices that you've made on my behalf. Your prayer for me was what sustained me thus far. I would also like to thank all of my friends who supported me in writing, and encourage me to strive towards my goal.

TABLE OF CONTENTS

CH	APTER 1 INTRODUCTION	Pages
1.1	Background and problem statement	1
1.2	Significance of study	2
1.3	Objective of study	2 3 3
1.4	Scope of study	3
CH	APTER 2 LITERATURE REVIEW	
2.1	Plant Secondary Metabolite	5
	2.1.1 Terpenes	6
	2.1.2 Phenolics	7
	2.1.3 Alkoloids	7
2.2	Family of leguminosae	8
	2.2.1 The other uses of leguminosae family	9
	2.2.2 Antibacterial activity	11
	Vacuum Liquid Chromatography	12
2.4	Thin Layer Chromatography	14
2.5	2.4.1 Preparative Thin Layer Chromatography Skin disorder	15
2.5		15
	2.5.1 staphylococcus aureus	16
CH	APTER 3 METHODOLOGY	
3.1	Materials	
	3.1.1 Raw Materials	18
	3.1.2 Chemicals	18
	3.1.3 Apparatus	19
3.2	Methods	21
	3.2.1 Extraction of stem	21
	3.2.2 Fractionation by Vacuum Liquid Chromatography	21
	3.2.3 Phytochemical screening test	22
	3.2.3.1Test for terpenoids	22
	3.2.3.2Test for phenolics	23
	3.2.3.3Test for compounds with – CH=CH-	23
	3.2.4 Screening functional group by using FTIR	23
	3.2.4.1Test for standard saponin	23
	3.2.5 Antimicrobial activity assay	24
	3.2.5.1Preparation of test solution disc	24
	3.2.5.2Chemicals for antimicrobial assay	25

	3.2.6 In-vitro Antimicrobial Activity Assay 3.2.6.1 Disc diffusion array	25 25
	5.2.0.1 Disc diffusion array	23
CHA	APTER 4 RESULT AND DISCUSSION	
4.1	Result and discussion	26
	Extraction and fractionation	28
	Thin Layer Chromatographic (TLC) profile of the stems	29
	TLC characteristics of compounds of fraction 1 F1 (DCM: MeOH)	
	(9: 1)	33
4.3.2	TLC characteristics of compounds of fraction 2 F2 (DCM: MeOH)	
	(5: 5)	37
4.3.3	TLC characteristics of compounds of fraction 3 F3 (DCM: MeOH)	
	(3: 7)	40
4.4	Fourier Transforms Infrared Spectroscopy (FTIR) characterization	
	of <i>E.spiralis</i>	44
4.5	In-vitro antibacterial activity of different fractionation	48
CHA	APTER 5 CONCLUSION AND RECOMMENDATIONS	54
CITI	ED DEFEDENCES	5.0
CIII	ED REFERENCES	56
CURRICULUM VITAE		
CUN	MUCCEUM TIME	60

ABSTRACT

FRACTIONATION OF METHANOL EXTRACT FROM THE STEM OF ENTADA SPIRALIS RIDL USING VACUUM LIQUID CHROMATOGRAPHY AND ITS PRELIMINARY PHYTOCHEMICAL INVESTIGATION OF ACTIVE COMPONENTS

The scope of study was focused on fractionation of methanol (MeOH) extract from the stem of E.spiralis using Vacuum Liquid Chromatography (VLC) technique to determine the active fraction using disc diffusion method and to screen phytochemical compounds from methanol fractions using thin layer chromatography (TLC). The present of phytocontituents compounds were detected by using Fourier Transforms Infrared Spectroscopy (FTIR) such as saponin, terpenoid and steroid. The study showed that the phytoconstituents present in the stem of *E. spiralis* which makes it remarkable for its use and phytoconstituents was evaluated against Gram positive bacteria such as staphylococcus aureus and staphylococcus epidermis by using disk diffusion assay. Phytocontituents were determined at three different fractions with different solvents dichloromethane (DCM) to methanol (MeOH) ratio and fractionations were namely as F1, F2 and F3 with binary system 9: 1;(DCM: MeOH) 5: 5;(DCM: MeOH) and 3: 7;(DCM: MeOH) respectively. Phytochemical screening of all fractions showed presence of terpenoids, steroids and saponin while phenolics and flavanoids were absence. The antibacterial activity of all fractions of stems extraction of E.spiralis was determined by agar well diffusion method at concentration 400mg/ml using Gram - positive staphylococcus aureus and staphylococcus epidermis. F2 and F3 showed susceptibility against selected bacteria and F2 was inhibited staphylococcus epidermis growth with inhibition zone 11.3 mm while F3 was found the most fraction active toward staphylococcus aureus with inhibition zone 11.5 mm. These studies showed that fractionation of stems methanol extracts of *E. spiralis* inhibited the growth of microorganisms in polarity dependently. The fractionations of stems have phytochemical constituents who possess the antimicrobial activity. The data was demonstrated as the preliminary antimicrobial properties of the stems of *E.spiralis* as new antimicrobial is necessitated in face of the increased resistance of infectious microorganisms to antimicrobial.