PHYSICAL AND ELECTRICAL PROPERTIES OF MG30 BASED SOLID POLYMER ELECTROLYTES

MUHAMMAD ASYRAF AL-WAFIY BIN LAUTHFI

BACHELOR OF SCIENCE (Hons.) PHYSICS FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2022

ABSTRACT

PHYSICAL AND ELECTRICAL PROPERTIES OF MG30 BASED SOLID POLYMER ELECTROLYTES

The focus of this research is on the electrical and physical properties of a new polymer electrolyte based on MG30 with ammonium nitrate NH₄NO₃. This study used ammonium nitrate as the doping salt and poly (methyl methacrylate) grafted natural rubber (MG30) as the host polymer. To create solid polymer electrolyte, grafted natural rubber (MG30) and a thin film of ammonium nitrate salt were created using a solution casting approach. The organic components and electrical conductivity of all samples was measured using Fourier Transform Infrared Spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS) respectively. A temperature of 25 °C was used for the impedance measurement. Using the bulk resistance value computed from the intercept of the complex impedance plot, the electrical conductivity of the samples was determined. The optimum conductivity of the MG30+NH₄NO₃ thin film is 6.3641 $\times 10^{-6}$ Scm⁻¹ which is sample A7 with 35 wt% NH₄NO₃. A higher level of electrical conductivity is a result of the salt concentration increasing. The samples were able to reach the maximum electrical conductivity of $x10^{-6}$ Scm⁻¹. In conclusion, NH₄NO₃ has a maximum electrical conductivity of about 6.3641x10⁻⁶ Scm⁻¹. It proves that when MG30 is salted, the conductivity value is higher than pure MG30. The electrical conductivity was improved by the doping salt addition of NH4NO3. The conductivity of the MG30-salt system is temperature dependent and follows thermally assisted VTF behaviour.

TABLE OF CONTENTS

	i ii
ABTRAK	
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS i	v
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF EQUATIONS v	iii
CHAPTER 1 INTRODUCTION	
1.2 Problem Statement1.3 Objectives of Study1.4 Scope of Work	1 3 3 4 4
CHAPTER 2 LITERATURE REVIEW	
 2.2 Polymer Electrolytes 2.2.1 Classification of Polymer Electrolyte 2.2.1.1 Solid polymer electrolyte 2.2.1.2 Gel polymer electrolyte 2.2.1.3 Composite polymer electrolyte 2.3 Polymer Host 2.3.1 30% Poly (Methyl Methacrylate) Grafted Natural Rubber 	5 7 7 8 9
1 8	2

CHAPTER 3 METHODOLOGY

3.1 Introduction	16
3.2 Materials	17
3.3 Sample Preparation	17
3.3.1 Solid Polymer Electrolytes	17
3.4 Sample Characterization	18
3.4.1 Fourier Transform Infrared Spectroscopy (FTIR)	18
3.4.2 Electrochemical Impedance Spectroscopy (EIS)	19

CHAPTER 4 RESULT AND DISCUSSION

4.1 Fourier Transform Infrared Spectroscopy (FTIR)			
4.1.1 The infrared spectrum of pure MG30	21		
4.1.2 The infrared spectrum of MG30-Salt.	22		
4.1.3 The infrared spectrum of MG30 in different concentrations	23		
4.2 Electrochemical Impedance Spectroscopy (EIS)			
4.2.1 Conductivity of salted MG30 films with different amount	25		
of NH4NO3 systems.			
4.2.2 Conductivity-Temperature Relationship	28		
4.2.2.1 Arrhenius Equation	28		
4.2.2.2 Vogel-Tamman-Fulcher (VTF)	30		
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS			
5.1 Conclusion			
5.2 Recommendation			
CITED REFERENCES	37		

LIST OF FIGURES

Figure	Caption	Page
2.1	Chemical Structure of Pure MG30	12
2.1	The Structure of NH ₄ ⁺	13
3.2	Flowchart of the Experimental Work on the Characterization of	20
	Solid Polymer Electrolyte	
4.1	The infrared spectrum of pure MG30	21
4.2	The infrared spectrum of MG30 + NH ₄ NO ₃	22
4.3	The infrared spectrum of nine MG30 + NH4NO3 samples	23
4.4	Conductivity impedance plot for pure MG30 at room temperature.	24
4.5	Conductivity impedance plot for MG30+35 wt% NH4NO3 at room	25
	temperature	
4.6	Conductivity versus wt% of NH4NO3 at room temperature.	27
4.7	Arrhenius plot for MG30-x wt% of NH4NO3	30
4.8	VTF plot for MG30-x wt% of NH4NO3	