MODELLING AND OPTIMIZATION OF A LIGHT TRAPPING SCHEME IN A SILICON SOLAR CELL USING SILICON NITRIDE (SiNx) ANTI-REFLECTIVE COATING

ALIAH SYAFIQAH BINTI ZAMBREE

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2022

TABLE OF CONTENTS

Page

TITL	E PAGE	i
ACK	ii	
TABI	iii	
LIST	V	
LIST OF ABBREIATIONS		vi
ABST	TRACT	vii
CHAI	PTER 1: INTRODUCTION	1
1.1	Background of study	1
1.2	Problem statement	4
1.3	Objective of study	5
1.4	Significance of study	5
CHAI	PTER 2: LITERATURE REVIEW	6
2.1	Structure of solar cell	6
	2.1.1 Light trapping scheme	7
	2.1.2 Type of front surface	9
2.2	I-V curve	10
2.3	Antireflective theory	11
2.4	Optical properties of silicon nitride	12
2.5	Current density of solar cell	16
2.6	Wafer ray tracer simulation	18
CHAPTER 3: RESEARCH METHODOLOGY		21
3.1	Experimental design	21
CHAI	PTER 4: RESULT AND DISCUSSION	23
4.1	Introduction	23
4.2	Comparison curve of RAT	23
4.3	Effect of ARC thickness on J _{max}	26

4.4	Comparison and Lambertian limit	30
CHAI	PTER 5: CONCLUSION AND RECOMMENDATION	31
5.1	Conclusions	31
5.2	Recommendations	31
REFERENCES		33

LIST OF FIGURES

Figure 1:	Solar irradiance spectrum	2
Figure 2:	Structure module solar cell	6
Figure 3:	Animation angle for the light incident	8
Figure 4:	Light incident on a cell will of the silicon (Si)	9
Figure 5:	I-V curve of solar cell	10
Figure 6:	Working principle of ARC	12
Figure 7:	Transmittance of SiNx with thickness of 2000Å	13
Figure 8:	Transmittance of SiNx with thickness of 6000Å	14
Figure 9:	Function of photon energy for SiNx with thickness of 2000Å	14
Figure 10:	Function of photon energy for SiNx with thickness of 6000Å	15
Figure 11:	Ideal device every photon above the bandgap	17
Figure 12:	Main window of PV Lighthouse	19
Figure 13:	The sample output of the PV Lighthouse software	20
Figure 14:	Schematic diagram of LT schemes in thin c-Si	21
Figure 15:	Results graph of the LT scheme	25
Figure 16:	Integrated J _{max} and EQE curve	29
Figure 17:	Reflection and absorption curve for Scheme I	30

ABSTRACT

MODELLING AND OPTIMIZATION OF A LIGHT TRAPPING SCHEME IN A SILICON SOLAR CELL USING SILICON NITRIDE (SiNx) ANTI-REFLECTIVE COATING

Solar cells system has been gaining remarkable attention in the photovoltaic (PV) industry in recent years. Therefore, many people used solar cells in their life. But, from time to time, many industries keep improve it to get the best of efficiency of the solar cell. In this work, it presents ray tracing of light trapping, (LT) schemes in thin c-Si to enhance broadband light absorption within 300-1200 nm wavelength region. For the ray tracing simulation, mono c-Si wafer with 100 µm thickness is investigated and solar spectrum (AM1.5G) at normal incidence is used. Front planar with silicon nitride (SiNx) anti-reflective coatings (ARC) with the difference thicknesses are the LT schemes being studies in this work. The broadband anti-reflective coating (ARC) can effectively reduce the optical loss and improve the energy efficiency in the solar cells. The optical properties of the thin c-Si are analyzed with incremental LT schemes. Not only that, the current density also calculated from the absorption curve. Optical properties and current density were evaluated to find out the best thickness and refractive index of the silicon nitride (SiNx). The proposed ARC material is silicon nitride (SiNx) but with different thickness which are 75 nm, 80 nm and also 56.78 nm. The initial simulation results show that the solar cell current density is about 24.81 mA/cm². A great J_{max} enhancement in solar cell was achieved with utilizing the ARC thickness. Among the three ARC thickness, 75 nm SiNx ARC realized a good improvement in J_{max} enhancement which reached about 41.31% when compared to the reference c-Si.