MODELLING AND ANALYSIS OF ZINC OXIDE ANTIREFLECTION COATING THICKNESS ON SILICON SOLAR CELLS USING WAFER RAY TRACER

NUR AMELIA SHAZANA BINTI AZIZ

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Sciences (Hons.) Physic in the Faculty of Applied Sciences University Teknologi MARA

JULY 2022

TABLE OF CONTENTS

ACKNOWLEDGEMENT		i
TABLE OF CONTENTS		ii
LIST OF FIGURES		iii
LIST OF TABLES		iv
LIST OF ABBREVIATIONS		iv
ABSTRACT		V
СНАРТ	TER 1	
INTRO	DUCTION	
1.1	Background of study	1
1.2		3
1.3	Objective	5
1.4	Significant of study	5
СНАРТ	'ER 2	
LITER	ATURE REVIEW	
2.1	Introduction	6
2.2	Structure of Solar Panel	8
2.3	Optical Properties in Solar Cel	9
	2.3.1 Thickness of the ARC	11
2.4	Current Density	11
2.5	Zinc Oxide as ARC	13
2.6	AM 1.5G	14
2.7	Simulation Method	16
СНАРТ	TER 3	
RESEA	RCH METHODOLOGY	
3.1	Introduction	18
3.2	Design of the Solar Cell	21
СНАРТ	ER 4	
RESUL	T AND DISCUSSION	
4.1	Introduction	24
4.2	Reflection, Absorption and Transmission	24
4.3	J _{max} value	27
СНАРТ	TER 5	
CONCI	LUSION AND RECOMMENDATION	
5.1	Conclusion	30
5.2	Recommendation	31
REFERENCES		32

LIST OF FIGURES

Figure 2.1 :	Illustration of diffusion of light	7
Figure 2.2 :	6 main components of solar panel	8
Figure 2.3 :	Illustration to optical phenomenon in solar cells	10
Figure 2.4 :	IV curve of a solar cell showing the short circuit current	12
Figure 2.6 :	a) Illustration of the condition of the sun of certain AM.b) Solar spectrum of AM 1.5G.	15
Figure 3.1.1 :	Front page of wafer ray tracer software	19
Figure 3.1.2 :	Exanple of the graph of Reflection, Absoprtion and Transmission	20
Figure 3.1.3 :	Example of the output data	20
Figure 3.2 :	a) Reference: Diagram of planar silicon solar cells without ARC as reference. b) Scheme I: Silicon solar cell with ZnO ARC with thickness of 60nm. c) Scheme II: Silicon solar cell with ZnO ARC with thickness of 70 nm. d) Scheme III: Silicon solar cell with ZnO ARC with thickness of 80 nm. d) Scheme IV: Silicon solar cell with ZnO ARC with thickness of 90 nm.	21
Figure 4.2 :	 a) Reflection b) Absorption c) Transmission data curves for silicon solar cells with different thickness of ZnO ARC which is 60nm, 70 nm, 80 nm and 90 nm and also with the reference 	25
Figure 4.3	Graph of External Quantum Efficiency (EQE) for the reference and the scheme for 60nm, 70nm, 80nm and 90nm ZnO ARC on silicon solar cell.	29

LIST OF TABLES

Page

Table 3.2 :	Estimation of current density for each of the thickness of	22
	ZnO ARC	
Table 4.1 :	The calculated J_{max} of the silicon solar cell for the reference	
	(100 $\mu m)$ and the respective scheme for the ARC as shown in	28
	the chapter 3	

LIST OF ABBREVIATIONS

- ARC : Antireflection Coating
- ZnO : Zinc Oxide
- PV : Photovoltaic
- EVA : Ethylene Vinyl Acetate
- AM1.5g : Air Mass 1.5 spectra

ABSTRACT

Antireflective coating (ARC) are starting to gained popularity in the market of the solar cells since it has the potential to reduce the optical loss experience by the solar cells. The reflection from the surface of the solar cells without the ARC is approximately 30% and it affected the current density in the cells. The ZnO material has been seen to have a very promising criteria to be a single layer of the ARC so this material have been chosen to be the ARC to see enhancement of the solar cells performance. The layer ZnO ARC is used on top of the solar cell with various thickness which is 60nm, 70nm, 80nm and 90 nm. The optical properties of each thickness have been gained by using a software name Wafer Ray Tracer by PV lighthouse. The data to be analysed are the reflection, absorption and transmission and the current density. The optimum thickness of ZnO that result in the maximum current density will be study in this work. This simulation at the end show that every thickness of the ZnO ARC have their own wavelength that they work at the optimum level but it can be said that it higher the performance of the solar cells without the ARC.