EDDY CURRENT THERMOGRAPHY TESTING ON LACK OF FUSION (LOF) DEFECT OF CARBON STEEL WELDED SAMPLE

NURLIYANA SHAMIMIE BT RUSLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi Mara

JULY 2014

ACKNOWLEDGEMENTS

All praise to the Almighty who has given me an opportunity pertaining my Final Year Project as fundamental course for Bachelor in Science (Hons) Physics program. First of all, I would like to express my deepest gratitude to my supervisor, Encik Syamsir Akmal bin Senawi who gave a tremendous guidance for this research until the thesis is successfully complete. His mentorship and attention are greatly appreciated.

Special thanks to my co-supervisor, Dr. Ilham Mukriz bin Zainal Abidin from Malaysian Nuclear Agency for his valuable guidance, advices and knowledgesharing during my Final Year Project. My thesis would not have been possible without his amazing support. He gave me many excellent lessons from the beginning to the end of my final year project. It is truly an honor for me to be one of his students.

I must also convey my earnest appreciation to Cik Nurhafzan Sarah and En. Masrol from Non-destructive Testing (NDT) group of Malaysian Nuclear Agency as they are the people that facilitated my project at the Advanced NDT Lab in Malaysian Nuclear Agency.

Finally, I am greatly indebted to Universiti Teknologi Mara (UiTM) for giving me an opportunity to complete my studies with full-equipped facilities and also a very glorious thanks to all lecturer and members of Bachelor in Science (Hons) Physics program for their co-operation during my studies.

Nurliyana Shamimie bt Rusli

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix

ABSTRACT x ABSTRAK xi

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem statement	2
1.3	Significance of study	3
1.4	Objectives	4

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	5
	2.1.1 Eddy current	6
	2.1.2 Thermography	8
	2.1.2.1 Infrared Camera	8
2.2	Conductive material for inspection	9
	2.2.1 Welded sample	10
	2.2.2 Lack of fusion	10
2.3	Research parameter	11
2.4	Analysis and characterization of defect	12
2.5	Advantages and limitation of eddy current thermography	13
2.6	Eddy current thermography testing in recent application and	14
	development	

Page

CHAPTER 3 METHODOLOGY

3.1	Analysis over the welded sample	16
	3.1.1 Thermographic analysis	17
	3.1.2 Digital radiography analysis	19
3.2	Matlab analysis	20
3.3	Image acquisition and processing	20
3.4	Sample, apparatus and instruments	21

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Sampl	es	24
	4.1.1	Welded samples	24
	4.1.2	Radiographic image	25
4.2	Eddy of	current thermography results and analyses	27
4.3	Matlal	o analysis	33
	4.3.1	Temperature profile of the line scan data	34
	4.3.2	Combination of line scan graph of temperature profile	37
	4.3.3	Defect location identification- Error bar	39

CHAPTER 5 CONCLUSION AND RECOMMENDATION

CITI	ED REFERENCES	44
5.2	Recommendations	43
5.1	Conclusion	4

APPENDICES	46
CURRICULUM VITAE	48

ABSTRACT

EDDY CURRENT THERMOGRAPHY TESTING ON LACK OF FUSION DEFECT (LOF) OF CARBON STEEL WELDED SAMPLE

Eddy Current Thermography Testing technique is one of the advanced emerging non-destructive test techniques that provide fast and efficient method for defect detection and characterization over a relatively large area of surface or subsurface of the material being tested. This technology is based on the current excitation at the specific heating time by the action of electromagnetic induction on probe. The probe will produce magnetic flux directly towards the electrically magnetic material and will form the path of eddy current on the material. Eddy current path will be disrupted by the presence of defect. The quantitative information about the defect will be acquired by the infrared camera that is sensitive to transient signal of heat on the material under inspection. The quantification analyses of position and length of Lack of Fusion (LOF) defect can be made through a maximum temperature amplitude feature. The study is implemented by the acquisition of two-dimensional image from the thermoIMAGER TIM software of the infrared camera and stimulating line scan graph of temperature amplitude by using Matlab. In recent years, Eddy Current Thermography Testing technique has gained interest of many researchers as well as being part of industries demand. The studies demonstrate the effectiveness and reliability of the Eddy Current Thermography technique which can provide both qualitative as well as quantitative information for defect assessment compared to the other conservative non-destructive technique which will only provide qualitative information.