EFFECT OF PbO ADDITION ON PHYSICAL, STRUCTURAL AND OPTICAL PROPERTIES OF PbO-Na₂O- B₂O₃

NUR AZILAH BINTI ABDUL RAHMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2014

ACKNOWLEDGEMENTS

Upon completion of this project, I would like to thank to ALLAH, God the Almighty to allow me to finish this project successfully. I also would like to express my gratitude to many parties. My heartfelt thanks goes to my supervisor, Pn. Mardhiah bt Abdullah and Dr. Azman bin Kassim for their guidance, help, suggestions and encouragement while I am doing this study.

I would like to give a sincere appreciation to the staff of Physics Laboratory, Encik Shukri bin Muda, who gave me the permission to use all the machinery and required equipments.

A special thanks to my seniors and master students, Robaiah Hj Mamat, Norsyuhaida Ibrahim, and Nor Azura Che Mahmud for guiding me on how to write the proposal and report, giving further explanation about the project and teaching on how to use the instruments.

Last but not least, my deepest gratitude to my family, my lovely father and mother, and also my siblings for giving me the advice and encouragement when I go through the rough time. Without all the supports I might not be able to finish this project.

Nur Azilah binti Abdul Rahman

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1: INTRODUCTION

1.1	Background of study		
	1.1.1	Characteristics of glass	1
1.2	Glass Composition		
	1.2.1	Network former	3
	1.2.2	Network modifier	4
	1.2.3	Intermediate	5
1.3	Glass Formation Process		
1.4	Chemic	cal Composition of Glass	7
	1.4.1	Borate (B ₂ O ₃)	7
	1.4.2	Lead Oxide (PbO)	9
	1.4.3	Sodium Oxide (Na ₂ O)	10
1.5	Problem statement		12
1.6	Significance of Study		12
1.7	Objectives of Study		
1.8	Scope and Limitations		

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction	14

CHAPTER 3: METHODOLOGY

3.1	Introd	luction	17
3.2	Materials		
3.3	Apparatus and Instruments		
3.4	Experimental procedures		18
	3.4.1	Flow chart of the methodology	20
3.5	Characterization of the sample		21
	3.5.1	Density and molar volume measurement	21
	3.5.2	X-Ray Diffraction (XRD)	22
	3.5.3	Fourier Transform Infrared (FTIR)	23
	3.5.4	Microhardness	24
	3.5.5	UV-visible spectroscopy (UV-vis)	26

CHAPTER 4: RESULT AND DISCUSSION

4.1	Introduction		27
4.2	.2 Physical properties		27
	4.2.1	Density and molar volume	27
	4.2.2	Hardness Testing	30
4.3	Struct	tural properties	33
	4.3.1	X-Ray Diffraction (XRD) Analysis	33
	4.3.2	Fourier Transform Infrared Spectroscopy (FTIR)	34
4.4	Optic	al properties	38
	4.4.1	UV-visible (UV-vis) analysis	38

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 40

CITED REFERENCES	42
APPENDICES	44
CURRICULUM VITAE	45

ABSTRACT

EFFECT OF PbO ADDITION ON PHYSICAL, STRUCTURAL AND OPTICAL PROPERTIES OF PbO-Na₂O-B₂O₃

Five different glass samples have been prepared in this project by melt-quenching technique with composition xPbO - $(20-x)Na_2O$ - $80B_2O_3$, where x= 2, 4, 6, 8 and 10 (mol %). By varying the proportion of PbO and Na₂O, the effect of PbO to the lead borate glass can be investigated in terms of its density, molar volume, and hardness, structural by X-Ray Diffraction (XRD) technique and Fourier Transform Infrared (FTIR) spectroscopy; and Ultraviolet visible (UV-vis) also been employed to study the optical properties of these glasses. Based on the result of density and molar volume, it shows that there are oppositely relations between these two properties. With the addition of PbO, there are mixed alkali effects that happen in the glass sample that shown by the increasing trend of the density and vice versa for the molar volume. Partial replacement of B₂O₃ by PbO causes the hardness of the sample to be in increasing trend. The amorphous state of this glass was proved from the XRD spectra. On the other hand, FTIR spectra showed the presence of BO₃, BO₄, B-O linkage and OH functional group on the glass network. Additional of PbO also causes distinct changes in the specific region of wavelength of UV-vis absorption spectra which show the increase of optical absorption.