UNIVERSITI TEKNOLOGI MARA

MECHANICAL, PHYSICAL, ANTIMICROBIAL AND FEASIBILITY STUDY OF PLA-BASED NANO BIO-PLASTIC FOR FRUIT PACKAGING

NIK SYAZWANI BINTI NIK AHMAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Material Science and Technology)

Faculty of Applied Science

January 2023

ABSTRACT

The emergence of many new food products on the market has led to food spoiling during its shelf life and many food packages being thrown away. Therefore, nano bio-plastic packaging has been introduced in the packaging industry. Nano bio-plastic packaging helps to prolong the shelf-life of products through the use of nanoparticles and essential oil. In addition, nano bio-plastic packaging was made from biodegradable polymers that can be decomposed. Nano bio-plastic films made from polylactic acid (PLA) and nanoclay were produced using a solvent casting method with addition of 1.0%, 3.0% and 5.0% (wt.) nanoclay and a constant volume of lemongrass essential oil were added to the PLA solution. The mechanical, physical, chemical, and antimicrobial properties of the nano bio-plastic films were investigated. To analyses the film samples, tensile testing, FTIR analysis, UV-barrier testing, and scanning electron microscopy (SEM) were performed. The feasibility study on the using of nano bio-plastic as fruit packaging was done on red grapes for 14 days. The weight loss and firmness of red grapes were measured. Mechanical test showed the nano bio-plastic films with 3.0 wt. % nanoclay has optimum mechanical properties with tensile strength (TS) 30.36 MPa and elongation at break (EAB) 7.05%. The increment in TS and EAB are 20% and 80% respectively, over the pure PLA film. The transparency of the PLA film was not significantly affected by the addition of nanoclay and interestingly, 1.0 wt. % and 3.0 wt. % nanoclay showed approximately the same value of light transmission which are 84.86% and 83.95%, respectively. The incorporation of lemongrass essential oil (LgEO) shows antimicrobial properties of PLA nano bio-plastic against S. aureus and E. coli with 14.30 - 18.40 mm inhibition zone. The feasibility study resulted the red grapes packaged with nano-bioplastic packaging shows better physical appearance as compared to the grapes packaged with control PLA film. From this study, PLA nano bio-plastic films shows the best properties at 3% nanoclay and have proven to have antimicrobial ability to prolong the freshness of fruit, thus could be a good alternative material in food packaging.

ACKNOWLEDGEMENT

Firstly, and foremost, I would like to thank The Almighty Allah, for His guidance and blessing, which allow me to finish this study, Alhamdullilah.

I would like to extend my gratitude to Universiti Teknologi MARA for granting me the 'Geran Insentif Penyeliaan' to complete my master study and bring this research to success.

My immerse gratitude and thanks to my supervisor Assoc. Prof. Dr. Siti Norasmah Surip, who always encourage and support me while completing this study. Her generosity towards sharing knowledge, the idea in assisting patience, her consideration, and me has been the main momentum in completing this study. I also would like to thank Prof. Dr. Saifollah Abdullah for his support, knowledge, and assistance. Not to forget, Encik Hafizi from the Institute of Tropical Forestry and Forest Product (INTROP) and microbiology lab for providing facilities and assistance while running this study.

My appreciation also goes to my beloved parent and family members who always supported and encouraged me during the period of this study. Special thanks to those who is going through up and down with me.

TABLE OF CONTENTS

Page

CON	FIRMA	TION BY PANEL OF EXAMINERS	ii		
AUTHOR'S DECLARATION					
ABSTRACT					
ACKNOWLEDGEMENT					
TABI	TABLE OF CONTENTS				
LIST OF TABLES					
LIST OF FIGURES					
LIST OF SYMBOLS					
LIST	LIST OF ABBREVIATIONS				
CHA	PTER (ONE INTRODUCTION	1		
1.1	Resear	rch Background	1		
1.2	Proble	m Statement	2		
1.3	Objectives				
1.4	Significance of Study				
1.5	Scope and limitations				
CHA	PTER 1	TWO LITERATURE REVIEW	5		
2.1	Food p	backaging	5		
	2.1.1	Role of food packaging	7		
2.2	Types	of food packaging	9		
	2.2.1	Active packaging	9		
	2.2.2	Active packaging systems	10		
	2.2.3	Intelligent packaging	13		
	2.2.4	Types of intelligent packaging	14		
2.3	Nano bio-plastic packaging		14		
	2.3.1	Traditional vs. Nano Bio-plastic packaging for better sustainability	16		
	2.3.2	Nanotechnology	16		
	2.3.3	Nanoclay	21		

	2.3.4	Nanotechnology in safety, social and commercial acceptance	27		
	2.3.5	Tensile strength and elongation at break of nano bio-plastic	films		
		packaging	28		
	2.3.6	Antimicrobial properties of nano bio-plastic films packaging	31		
	2.3.7	Oxygen barrier properties of nano bio-plastic film packaging	32		
	2.3.8	Nano bio-plastic film packaging application	33		
	2.3.9	Essential oil	35		
2.4	2.4 Polymer				
	2.4.2	Biodegradable polymers	44		
	2.4.3	Polylactic Acid as biopolymer	45		
CH	APTER 7	THREE RESEARCH METHODOLOGY	52		
3.1	Flowc	hart	52		
3.2	Mater	Materials			
3.3	Films	Films Preparation			
3.4	Film c	Film characterization			
	3.4.1	Tensile test	54		
	3.4.2	Chemical property	54		
	3.4.3	Morphology property	55		
	3.4.4	Transparency analysis	55		
	3.4.5	Microbiological evaluations	55		
3.5	3.5 Assessment on quality of packed fruits		55		
	3.5.1	Packaging Application	55		
CH	APTER I	FOUR RESULTS AND DISCUSSION	57		
4.1	Tensil	Tensile test			
4.2	Chem	ical properties	61		
	4.2.1	Fourier Transform Infrared Spectroscopy (FT-IR)	61		
4.3	Morpl	Morphology properties			
4.4	Transj	Transparency analysis			
4.5	Antim	Antimicrobial evaluation 6			
4.6	Asses	Assessment on packaged fruits			