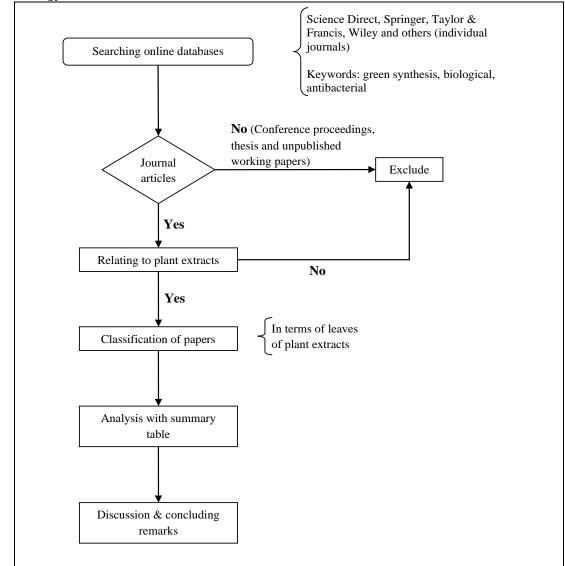
SIIC036 SYNTHESIS OF SILVER NANOPARTICLES USING PLANT EXTRACTS

Nur Fatini Mohamad Nasran¹ and Marlina Mohd Mydin² ¹Faculty of Chemical Engineering, Universiti Teknologi MARA Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang Malaysia ² Faculty of Applied Sciences, Universiti Teknologi MARA Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang Malaysia

*Corresponding author: narlimar@uitm.edu.my

Abstract:

This review is a comprehensive contribution in a field of green synthesis, characterization and antibacterial activity of silver nanoparticles (AgNPs) using various plant sources. Green synthesis of AgNPs is an environmentally friendly synthesis methods which is becoming more and more popular in field of nanotechnology, with the aim is to avoid hazardous byproduct. Other important advantages of green synthesis of AgNPs lies in its cost effective and in the abundance of raw materials. Use of plants in synthesis of AgNPs among all other green method available is preferred due to their various metabolites which not only act as reducing but as stabilizing or capping agents. Characterization of the synthesized AgNPs performed through TEM, SEM and AFM were comparatively analyzed for their size in term of nanometer and their shape. Besides, the clinically significant of the AgNPs conferring the antibacterial activity by studied against some pathogenic gram-positive and gram-negative bacteria and some pathogenic fungus. This can conclude that due to these unique properties, AgNPs will have a key role in many of the nanotechnology-based processes. This review will help researchers to develop novel AgNPs based drugs using green technology.


Keywords:

green synthesis, silver nanoparticles, plant extract, characterization, antibacteria

Objectives:

- To study the physicochemical properties of silver nanoparticles from plant extract
- To study the antibacterial properties of silver nanoparticles from plant extract

Results:

Plant	Reducing and capping agent	Average size	Shape	Reference
		(nm)		
Coptidis rhizome	Leaves extract	15	Spherical	[56]
Chenopodium murale	Leaves extract	40	Spherical	[57]
Tithonia diversifolia	Leaves extract	18	Spherical	[58]
Euphorbia hirta	Leaves extract	45	Spherical	[59]
Salvia spinosa	Leaves extract	5.13	Spherical	[60]
Impatients balsamina	Leaves extract	24	Spherical	[61]
Murraya koenigii	Leaves extract	13	Spherical	[62]
Eucalyptus globulus	Leaves extract	15	Spherical	[63]
Pedalium murex	Leaves extract	50	Spherical	[64]

Cerasus serrulata	Leaves extract	20	Spherical	[65]
Amaranthus gangeticus Linn	Leaves extract	13	Spherical	[66]
Phlomis	Leaves extract	25	Spherical	[67]
Tectona grandis Linn	Leaves extract	27	Spherical	[68]
Origanum majorana	Leaves extract	55	Spherical	[69]
Citrus sinensis	Leaves extract	41	Spherical,	[69]
			Cubical	
Psidium guajava	Leaves extract	30	Spherical	[70]
Putranjiva roxburghii wall	Leaves extract	5.74	Spherical	[71]
Azadirachta indica	Leaves extract	34	Spherical	[72]
Zingiber officinale rhizome	Leaves extract	3.6	Spherical	[73]
Justicia adhatoda	Leaves extract	15	Spherical	[74]

Plant	Reducing and capping agent	Antibacterial Activity	Reference
Coptidis rhizome	Leaves extract	Escherichia coli,	[56]
		Staphhylococcus aureus	
Chenopodium murale	Leaves extract	Staphhylococcus aureus	[57]
Tithonia diversifolia	Leaves extract	Escherichia coli,	[58]
		Salmonella typhimurium,	
		Salmonella enterica,	
		Bacillus subtilis	
Euphorbia hirta	Leaves extract	Bacillus cereus,	[59]
		Staphhylococcus aureus	
Salvia spinosa	Leaves extract	Bacillus subtilis,	[60]
		Bacillus vallismortis,	
		Escherichia coli	
Impatients balsamina	Leaves extract	Staphhylococcus aureus,	[61]
		Escherichia coli	
Murraya koenigii	Leaves extract	Staphhylococcus aureus,	[62]
		Escherichia coli	
Eucalyptus globulus	Leaves extract	Staphylococcus aureus,	[63]
		Escherichia coli,	
		Pseudomonas aeruginosa	
Pedalium murex	Leaves extract	Klebsiella pneumoniae,	[64]
		Mariniluteicoccus flavus,	
		Pseudomonas	
		aeruginosa, Bacillus	
		pumilus, Staphylococcus	
		aureus	
Cerasus serrulata	Leaves extract	Streptococcus mutans,	[65]
		Staphylococcus aureus	
Amaranthus gangeticus Linn	Leaves extract	Bacillus subtilis,	[66]
-		Shigelle flexineri,	
Phlomis	Leaves extract	Staphyloccocus aureus,	[67]
		Bacillus cereus,	

		Salmonella typhi,	
		Escherichia coli	
Tectona grandis Linn	Leaves extract	Escherichia coli,	[68]
		Staphylococcus aureus	
Origanum majorana	Leaves extract	Escherichia coli	[69]
Citrus sinensis	Leaves extract	Bacillus subtilis	[69]
Psidium guajava	Leaves extract	Pseudomonas aeruginosa	[70]
Putranjiva roxburghii wall	Leaves extract	Staphylococcus aureus,	[71]
-		Escherichia coli,	
		Candida albicans,	
		Candida tropicalis	
Azadirachta indica	Leaves extract	Escherichia coli,	[72]
		Staphylococcus aureus	
Zingiber officinale rhizome	Leaves extract	Staphylococcus aureus,	[73]
		Escherichia coli	
Justicia adhatoda	Leaves extract	Bacillus subtilis,	[74]
		Klebsiella pneumonia,	
		Pseudomonas	
		aeruginosa, Escherichia	
		coli, Staphylococcus	
		aureus	

Conclusion:

It is concluded that during the last decade many efforts have been made for the development of green synthesis of AgNPs. The green synthesis of AgNPs using plant extract have many advantages over chemical and physical methods as they are simple, cost effective, easily scaled up and environmentally friendly. It is especially suited for making nanoparticles that must be free of toxic contaminants as required in therapeutic applications. Sufficient volume of published literature is available on the synthesis of AgNPs through green method. Several characterizations methods have been used for AgNPs synthesis and confirmation. The AgNPs synthesized using biological reducing and capping agents have shown wide variation in size and shape. The characterization analysis proved that the particles so produced in nanodimensions would be equally effective as antibiotics and other drug in pharmaceutical applications. Among applications, the antibacterial activity of AgNPs has been widely studied. The synthesized AgNPs using plant extract have great antibacterial activity against both pathogenic gram-positive and gram-negative bacteria and some pathogenic fungus. This can conclude that due to these unique properties, AgNPs will have a key role in many of the nanotechnology-based processes. This review will help researchers to develop novel AgNPs based drugs using green technology.