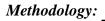
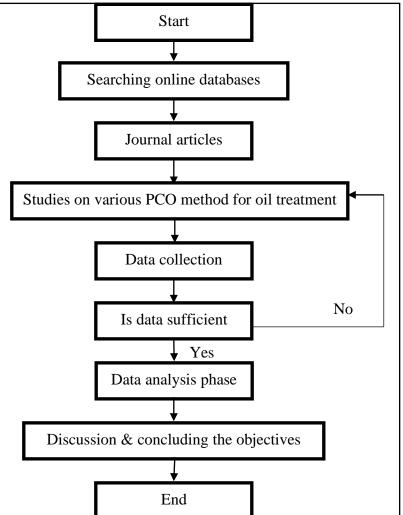
SIIC060 PHOTOCATALYTIC OXIDATION OF WASTE COOKING OIL USING ZEOLITE ZSM-5 & TiO₂ AS CATALYST: A PARAMETRIC OPTIMIZATION STUDY VIA RESPONSE SURFACE METHODOLOGY

Diyana Natasha Darimi¹ and Siti Khatijah Jamaludin² ¹Faculty of Chemical Engineering, Universiti Teknologi MARA Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang Malaysia ²Faculty of Chemical Engineering, Universiti Teknologi MARA Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang Malaysia

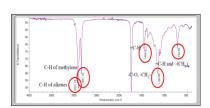
sitikhatijah@uitm.edu.my


Abstract:


Waste cooking oil (WCO) are generated large scale all over the world, hence it has devised serious problems of its waste management which contributes to water pollution. There are variety of methods in order to treat WCO, which are by esterification, transesterification, recycle process and photocatalytic oxidation (PCO) technology process. Among all these three processes, PCO is the least applied for water treatment. It is because this process needs to use of catalyst in order to have high reactive of PCO reaction. This review study explores the PCO process using zeolite ZSM-5 and TiO₂ as catalyst. The aim of this study is to review on characterization of WCO and catalyst (TiO₂ and ZSM-5). Other than that, the main aim of this study is to review the optimization of reaction conditions such as pH of solution, reaction temperature, catalyst loading and type of catalyst used (TiO₂, ZSM-5) on the removal of WCO by using Response Surface Methodology (RSM). The review study presented here are based on literatures from year 2015 until present which were retrieved from databases such as Scopus, Research Gate and Science Direct. The results showed that, harmful organic molecules such as Free Fatty Acid (FFA) are contained in WCO as reviewed from Fourier-Transform Infrared Spectroscopy (FTIR) results. Brunauer-Emmett-Teller (BET) and Thermal Gravimetric Analysis (TGA) reviewed that ZSM-5 has high surface area and thermal stability which comparable to TiO₂ and other catalyst (Pt and Ag). The reviewed of various optimization studies via RSM shows that the optimum parameters are pH of solution (6-7), reaction temperature (30°C-50°C), catalyst dosage (0.1 g 100mL⁻¹-0.3 g 100mL⁻¹) and type of catalyst used (ZSM-5). In addition, some researcher proved that other factors such as light intensity and irradiation time are also important in PCO to treated WCO.

Keywords:

Photocatalytic oxidation, Waste cooking oil, Zeolite ZSM-5 & Titanium dioxide catalyst, Parametric optimization, Response surface methodology.


- To conduct a review on characterization studies of waste cooking oil (WCO) functional group and of catalyst (TiO₂, ZSM-5) surface area and thermal stability.
- To review the optimization of reaction conditions such as initial pH of solution, reaction temperature, catalyst dosage and type of catalyst used (TiO₂, ZSM-5) on the removal of waste cooking oil (WCO) by using RSM.

Results:

WCO - FTIR

Reaction temperature

Organic	Reaction	Removal oil	Ref
pollutant	temperature (°C)	efficiency (%)	
Waste cooking oil (WCO)	From 30 - 50	85	Yerkinoya [23]
Waste cooking oil (WCO)	Below 80	82	Chen [85]
Vegetable oil	80	55	Gaya & Abdullah [79]
Olive oil	Between 20 - 80	60	Mohammed Haji [53]

Optimization - RSM

pollutant	pH pH	temperature	catalyst	dosage	oil	
	solution	(°C)	used		efficiency	
					(%)	
Olive oil	3	20 - 80	ZSM-5	0.1 - 0.4	80	Arkedi
				g 100ml·		[93]
				1		
Vegetable	3	80	TiO ₂	0.35 -	60	Amiri
oil				0.4 g		[94]
				100ml-1		
Waste	6-7	30 - 50	ZSM-5	0.1 - 0.3	95	Zhang
cooking				g 100ml		[91]
oil				1		
(WCO)						
Waste	3	Below 80	TiO ₂	0.8 g L-1	85	Andullah
cooking						[92]
oil						
(WCO)						
POME	-	-	Ag	0.25 g L·	-	Torbina
				1		[77]
	-	-	Pt	0.5 g L-1	65	Adriana
						[76]

ZSM-5 & TiO₂ - TGA & BET

Temperatures of calcinat	ion (°C)	400	500	600	700	800	900	Ref
Surface area (m ² g ⁻¹)	TiO ₂	•	52.5	7.78	-	-	•	[74]
	ZSM-	334	-	•	-	-	315	[75]
	5							
	Ag	•	6.7	•	4.8	-	•	[76]
	Pt	•	-	•	20.5	-	10.3	[77]

Types of catalyst used

~ 1				
Organic	Catalyst	Catalyst	Removal oil	Ref
pollutant	used	preparation	efficiency	
			(%)	
Olive oil	ZSM-5	Hydrothermal	-	Lovas [86]
		process		
Vegetable oil	TiO ₂	Sol-gel method	-	Higashimoto
				[55]
Waste cooking	ZSM-5	Aqueous reaction	85	Mgbemere
oil (WCO)		method		[28]
Waste cooking	TiO ₂	Sol-gel method	80	Yang [43]
oil (WCO)				
POME	Ag	Sol-gel method	-	Torbina [77]
	Pt	Aqueous reaction	65	Adriana [76]
		method		

Initial pH of the solution

Organic pollutant	Initial pH solution	Removal oil efficiency (%)	Ref	
Waste cooking oil (WCO)	Between 6 and 7	90	Naeem & Feng [15]	
Waste cooking oil (WCO)	3 to 9	85	Nguyen [80]	
Vegetable oil	3	80	Wang [81]	
Olive oil	3	50	Umar [82]	

ed Dosage of catalyst

Organic	Catalyst	Catalyst Dosage	Removal oil	Ref
pollutant	used		efficiency (%)	
Olive oil	TiO_2	0.1 - 0.4 g 100ml	60.2 - 83	Rahimi
		1		[87]
Vegetable oil	ZSM-5	0.35 - 0.4 g	70 - 50	Wei [89]
		100ml ⁻¹		
Waste cooking	ZSM-5	0.1 - 0.3 g 100ml	70.95 - 92.49	Garcia
oil (WCO)		1		[88]
Waste cooking	TiO ₂	0.8 g L ⁻¹	85	Bukhari
oil (WCO)				&
				Gonzalez
				[17][54]
POME	Ag	0.25 g L-1	-	Torbina
				[77]
	Pt	0.5 g L ⁻¹	-	Adriana
				[76]

Conclusion:

As conclusion, this review provides an overview of the wide range of photocatalytic activity to treat waste cooking oil (WCO). In general, photocatalytic oxidation process (PCO) is efficient, effective cost and environmentally friendly water and waste water treatment process. The study has confirmed the findings of Li et al. (2015) which found that waste cooking oil (WCO) is waste that need to be treated due to free fatty acid (FFA). FTIR resulted showed was C-H asymmetrical stretching in alkenes, C-H asymmetrical stretching in methylene, =C-H bending in methylene, -C-O and $-CH_2$ - bending and stretching in methylene groups and =C-H and $-(CH_2)_n$ bending in ester carbonyl functional group in fatty acid methyl ester. From TGA and BET reviewed studies found that ZSM-5 has high surface area and thermal stability which is comparable to TiO₂. This study has found that generally for optimization studied using RSM indicates that removal of oil best at initial pH solution range 6 and 7, reaction temperature 30°C to 50°C, catalyst dosage 0.1 g 100mL⁻¹ to 0.3 g 100mL⁻¹ and type of catalyst used ZSM-5 which up to 95% removal. Overall, the implementation of photocatalytic technological used to treated WCO known in Oleochemical industry indicates the considerable potential for future wide-scale adoption.