UNIVERSITI TEKNOLOGI MARA

CAPACITANCE INSERTION FOR A SINGLE RING TUNABLE DUAL-BAND BANDPASS FILTER

MOHD AZLAN BIN HARUN

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Telecommunication and Information Engineering

Faculty of Electrical Engineering

ABSTRACT

In this thesis, capacitance insertion for a single ring tunable dual-band bandpass filter is investigated. The study based on an existing single ring dual-band bandpass filter topology using Ansoft High Frequency Structural Simulator (HFSS) to simulate their performance with the different parameter value. The frequency analyzed is 2.65 GHz and 5.33 GHz with center frequency 4.00 GHz. The existing topology results are compared with the best value of four capacitance insertion at the edge of the ring in order to shift the frequency response. The result shows that the frequency response shifted from 2.65 GHz to 2.48 GHz which is 6.4% shifted for the lower passband while for upper passband the frequency response is shifted from 5.33 GHz to 5.00GHz (6.2% shifted). The findings of this research will benefit RF researchers and designers considering re-configurable dual-band bandpass filter in the design, particularly on WiMax applications

ACKNOWLEDGEMENT

Most importantly, all acclaim is to Allah, the Almighty, the Benevolent for His endowments and direction had given me the motivation to leave on this venture and ingraining taking all things together of my qualities to finish this venture with great well-being. Numerous snags were experienced amid the execution of the venture; however, each of them has upgraded my information in my field.

Above all else, I might want to express my true gratefulness to my supervisor, Dr Zuhani Binti Ismail who has helped me a considerable measure in giving thoughts, conclusions and positive feedback. I am appreciative to have her as an administrator and furthermore my coach. Her direction and supervision will without a doubt help me in my future endeavours.

To wrap things up, I am additionally significantly obliged to every one of my companions for being such understanding and receptive to sharing and talking about information until today. Because of the individuals who have helped me by implication or specifically in finishing this venture.

TABLE OF CONTENTS

		Page
AUTHOR'S DECLARATION		
ABSTRACT		
ACKNOWLEDGEMENT		
TABLE OF CONTENTS		
LIST OF FIGURES		
LIST OF TABLES		
LIST OF ABBREVIATIONS		
CHAPTER ONE: INTRODUCTION		
1.1	Overview	1
1.2	Problem Statement	2
1.3	Research Objectives	3
1.4	Scope Of Work	3
1.5	Thesis Organization	4
CHAPTER TWO: LITERATURE REVIEW		
2.1	Fundamental of Filter	5
	2.1.1 Types of Filter	6

	2.1.2	Design Considerations	9
2.2	Microstrip Filter		
	2.2.1	Microstrip Structure	11
	2.2.2	Dielectric Constant	12
	2.2.3	Effective Dielectric Constant	13
	2.2.4	Characteristic Impedance Constant	14
	2.2.5	Electrical Length	15
2.3	Coupled Lines		
	2.3.1	Even mode	16
	2.3.2	Odd Mode	18
2.4	Reconfigurable Bandpass Filter		
	2.4.1	Return loss	22
	2.4.2	Insertion loss	22
	2.4.3	Bandwidth	23
CHAI	PTER T	THREE: METHODOLOGY	24
3.1	Introduction		24
3.2	Research Methodology		25
3.3	Simulation Stage		
	3.3.1	Existing Single Ring Dual-Band Bandpass Filter	27
	3.3.2	Capacitance Insertion of a single Ring Tunable Dual-Band Bandpass Filter	33