

Cawangan Terengganu Kampus Bukit Besi

TITLE:

BIOMASS OF CHLORELLA SP. AS GREEN CORROSION INHIBITOR FOR MILD STEEL

SUPERVISOR:

MADAM NORZILA BINTI MOHD

SCHOOL OF CHEMICAL ENGINEERING COLLEGE OF ENGINEERING

2023

ABSTRACT

Corrosion is a huge and ongoing issue that causes substantial problems for the environment, our assets, and our lives, as well as economic losses especially in the industries. As a result, corrosion prevention requires additional focus. Metal corrosion inhibitors, both inorganic and synthetic, are used to prevent and slow corrosion, but they are dangerous. Green corrosion inhibitors, which are both environmentally and economically friendly, are so likely to provide the solution to this problem. In this paper, the biomass of the unicellular green algae *Chlorella sp.*, which synthesises a high quantity of protein, was investigated as a natural inhibitor of mild steel corrosion in 0.2 mol L^{-1} H₂SO₄ by Fourier-transform infrared spectroscopy (FTIR) analysis and gravimetric analysis to determine Inhibition Efficiency (IE%), Corrosion Rate (CR), and Surface Coverage (Ø). Furthermore, the thermodynamic characteristics of the adsorption process, such as Activation Energy (Ea), Enthalpy (H°), and Entropy (S°), were determined, and the results demonstrated a favourable interaction.

TABLE OF CONTENTS

AUTHOR'S DECLARATION			2	
ABSTRACT				
TABLE OF CONTENTS				
CHA	PTER (ONE BACKGROUND	6	
1.1	Introd	uction	6	
1.2	2 Literature Review		8	
	1.2.1	Definition of corrosion	8	
	1.2.2	Corrosion of mild steel	8	
	1.2.3	Consequence of corrosion	9	
	1.2.4	Corrosion protection	9	
	1.2.5	Corrosion inhibitors	9	
	1.2.6	Classification of inhibitors	10	
	1.2.7	Green corrosion inhibitor	10	
	1.2.8	Corrosion inhibition of mild steel acidic so	lution 10	
	1.2.9	Chlorella sp.	11	
1.3	Proble	em Statement	12	
1.4	Objectives 1			
1.5	Scope of Study		12	
CHA	CHAPTER TWO METHODOLOGY		13	
2.1	Materi	ials	13	
	2.1.1	Mild Steel	13	
	2.1.2	Preparation of Sample of Chlorella sp.	13	
2.2	Metho	od/synthesis	14	
	2.2.1	Gravimetric Method	14	
СНА	PTER 7	THREE RESULT AND DISCUSIION	16	
3.1	Introd	uction Err	Error! Bookmark not defined.	

REFERENCES		
4.2	Recommendation	29
4.1	Conclusion	29
CHAPTER FOUR CONCLUSION AND RECOMMENDATION		
3.4	Morphology Study	27
3.3	Gravimetric Analysis	18
3.2	FTIR Analysis	16

CHAPTER ONE BACKGROUND

1.1 Introduction

Mild steel is the most often utilised metal in almost all industrial and home applications. Mild steel is generally inexpensive and has metal qualities that make it suitable for a wide range of applications, particularly in the food, petroleum, chemical and electrochemical industries, and power generation. However, when exposed to acidic environments, these materials suffer extensive corrosion damage.

Corrosion issues emerge as a result of the interaction of aqueous solutions and mild steel in industrial operations such as pickling, in which the metal alloy comes into contact with strong acids to remove incrustations in the system. Corrosion has become a worldwide issue as industrial technology has advanced at a rapid pace. Corrosion damages around 25% of property, including industrial machines, automobiles, pipeline systems, homes, buildings, and railway bridges. Corrosion of metals or alloys is typically caused by electrochemical interactions with their surroundings. Surface impurities, pressure, temperature, and solution concentration all have an impact on the corrosion process. Corrosion occurs when metals and alloys strive to revert to their more stable thermodynamic state (oxides, hydroxides, and sulphides) after being corroded or attacked by chemicals.

An inhibitor is a substance that is added in small amounts to a corrosive environment to slow the corrosion reaction by forming a protective film. Although numerous synthetic chemicals are efficient in protecting metals from corrosion, the majority of them are harmful to the environment and humans, not to mention expensive to produce. Toxicity may arise during the compound's production and application. Concerns about the environment have heightened interest in developing more sustainable solutions, such as the investigation of corrosion inhibitors that have a lower environmental impact. Natural corrosion inhibitors are less expensive to manufacture, include more nutrients, are widely available, and are made from renewable materials. Furthermore, plant extracts are typically inexpensive and can be obtained using simple extraction techniques. The inhibitors have a wide range of applications. These are