UNIVERSITI TEKNOLOGI MARA

NUTRIENTS DYNAMICS IN PINEAPPLE (Ananas comosus L.) PLANTED PEAT SOIL UNDER FLUCTUATING WATER TABLE

NUR QURSYNA BINTI BOLL KASSIM

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Plantation and Agrotechnology

June 2016

ABSTRACT

Peat soil was renowned for its low nutrient availability which limits its potential for extensive agriculture use. Continuous shifting of aerobic and anaerobic condition due to fluctuating water table could lead to biogeochemical changes of the soil that could affect the cycling of nutrients in the peat system. Understanding such changes on the nutrient dynamics will help in the management and the agronomic practices of pineapple plantation on peat soil. This study assess the dynamics of N, P and K in peat soil under fluctuating water table using laboratory simulation and nutrient balance estimation approach. The effect of rainfall, fate of applied fertilizer and lime and the nature of peat were studied in relation to changes in N, P and K. In the study, Nitrogen continue to decrease together with available P and the exchangeable bases (K, Ca, Mg and Na) in pineapple-cultivated peat compared to undisturbed peat despite the application of fertilizer. This could indicate that the nutrients are heavily leached by the alternating water table or they are readily taken up by the growing pineapple crops or they are readily fixed by the acidic peat soil. Fertilizer requirement in this system is therefore high in order to cope with leaching, potential fixation and uptake activity. Very little NO₃-N was detected in the NPK fertilized aerobic peat while the application of urea resulted in significant amount of NH_4^+ -N found in both aerobic and anaerobic peat soil. The fluctuating water table in the peat profile which was significantly related with the amount of precipitation could have speed up the leaching of NO_3 -N as it was highly soluble and unlikely to be adsorbed by the peat. The NH_4^+ -N ions is better retained by the peat due to its positively charged nature and those that are leached can still be trapped by the underlying mineral. The ability of the mineral soil to adsorb and release nutrient ions in particular the cations could allow for nutrient recharging of the upper layers of peat when water table is high. The simulation study in the laboratory using a designated soil column showed that the concentration of total N and mineral-N (NO₃⁻N and NH₄⁺-N) was maximized when the water table was maintained at 40 cm. When the water table was fluctuated between 0-40 cm depth (representing the water table during wet season), soil available P reached its highest concentration in the soil. The fluctuation of water table between 40 - 80 cm depth (representing the water table during dry season) allows the gradual release of exchangeable K, Ca, Mg and Na. Without crops uptake, all of the treatments display a positive soil nutrient balance. In the presence of uptake by pineapple, a negative nutrient balance was observed for all treatments where the treatment with fluctuating water table between 0-40 cm recorded the highest nutrient deficiency. The study indicated that the fluctuating water table affects the different nutrients differently. Wet season tend to increase available P in peat soil while dry season encourage more decomposition and reduce leaching of major cations. Intermediate season tend to improve nitrate and ammonium availability in the peat system. Thus agronomic practices especially fertilizer application may have to take the rainfall factors into consideration.

ACKNOWLEDGEMENT

I wish to thank the Most Merciful, Allah S.W.T for His blessings in giving me the strength and courage to complete this long and challenging academic journey successfully.

I would like to confer my gratitude and thanks to my supervisor Assoc. Prof. Dr. Adzmi Yaacob, and co-supervisors, Assoc. Prof. Dr. Abdul Rashid Ahmad and Assoc. Prof. Dr. Zaini Hamzah, for their guidance, encouragement and installing the confidence in my abilities to carry out this research.

My appreciation goes to Hj. Sharifhuddin Idris (owner of the pineapple farm), the staffs of the Department of Agriculture (Soil Analysis Laboratory), Kuala Lumpur and the staffs of Forest Research Institute Malaysia (Soil Analysis Laboratory), Kepong, for providing the facilities and assistance during my sample analysis. I also wish to thank the Universiti Teknologi MARA for providing me with the Excellence Fund to cover the cost for this research.

Special thanks goes to my family, in-laws, friends and colleagues for their prayers, supports, sense of humor and presence when needed. To those who had helped me in one way or another, I appreciate your help and wish to thank you from the bottom of my heart.

Finally, this thesis is dedicated to my beloved husband, Syahrul Fawwaz Abdullah, my father, Mr Boll Kassim Gani, and my mother, Madam for the endless sacrifices, supports, prayers and loves. This piece of success is dedicated to the three of you.

Thank you.

je v ve

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	xiv
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxi

CHAPTER ONE: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	2
1.3	Significance of Study	3
1.4	Research Questions	4
1.5	Objectives of Study	4
1.6	Structure of Thesis	4

CHAPTER TWO: LITERATURE REVIEW

2.1	General Overview of Peat Soils	7
	2.1.1 Distribution of Peat Soils in Malaysia	7
	2.1.2 Definition of Peat Soils	8
	2.1.3 Classification of Peat Soils	9
	2.1.4 Decomposition of Organic Matter in Peat Soils	9
	2.1.5 Physical and Chemical Properties of Peat Soils	11
	2.1.6 Agriculture Potential of Peat Soils	11
2.2	Pineapple Cultivation on Peat Soils	13
	2.2.1 Effects of Pineapple Cultivation on Peat Properties	13
	2.2.2 Effects of Pineapple Cultivation on Peat Microstructure	14
2.3	The Dynamics of Water Table in Peat Soils	15
	2.3.1 Water Table in Peat Soils	15

	2.3.2 The Effects of Precipitation on Water Table	16
	2.3.3 The Effects of Water Table on Development of Peat Soil Profile	17
2.4	Fate of Fertilizers and Liming in Peat Soils	18
	2.4.1 Fate of Fertilizers in Peat Soil	18
	2.4.2 Fate of Liming in Peat Soil	19
	2.4.3 Fate of Liming and Fertilizers under Aerobic and Anaerobic	
	Condition	20
2.5	The Dynamics of N, P and K in Peat Soils	21
	2.5.1 N, P and K in soils	21
	2.5.2 Dynamics of N, P and K in Peat Soils under Fluctuating	
	Water Table	22
	2.5.3 Nutrient Balance under Fluctuating Water Table	23
2.6	Synthesize of Literature Review	24
CH	APTER THREE: RESEARCH METHODOLOGY	4
3.1	Study Area	26
	3.1.1 General Description of the Natural Undisturbed Peat	27
	3.1.2 General Description of the Pineapple Farm	27
	3.1.3 History of the Pineapple Farm	
3.2	General Methodologies	28
	3.2.1 Soil Sampling	30
	3.2.2 Analysis of Soil Chemical Properties	30
	3.2.3 Analysis of Soil Physical Properties	31
	3.2.4 Analysis of Soil Microstructure and Mineralogy	31
	3.2.5 Statistical Analysis	31

CHAPTER FOUR: PHYSICO-CHEMICAL PROPERTIES OF A

PEAT SOIL CULTIVATED WITH PINEAPPLE (Ananas comosus L.)

Study 1: Physico-Chemical Properties of Peat Soils after 3 Years and 4 Years of Pineapple Cultivation

4.1	Introduction	32
4.2	Research Methodology	32
4.3	Results	33
	4.3.1 Bulk Density	33