CHARACTERISTIC MULTIMODE SIW FILTER AND MICROSTRIP ANTENNA SQUARE PATCH

Thesis presented in partial fulfillment for the award of the Master of Science in Telecommunication and Information Engineering UNIVERSITI TEKNOLOGI MARA

ROSMAWATI BINTI OTHMAN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR MALAYSIA

ACKNOWLEDGEMENT

Assalammua'laikum w.b.t.

First of all, I would like to express great gratitude to Allah SWT for giving me the opportunity to be able to complete the project and my thesis as it is today. Thank God, this valuable experience and knowledge that I gained probably helped me to develop my personal skills and work in the future.

In the success of this thesis, I am involved with many people. They have contributed thoughts and ideas much towards my understanding. I would like to express my most gratitude and appreciation to my supervisor, Dr Aziati Husna Binti Awang consistent support and guidance as well as the prevision of his valuable time, encouraging, patience and motivation in completing this project.

I wish to express my warm and sincere thanks all my colleagues for the generous support throughout the semester and anybody who involved directly or indirectly constant help and knowledge contribution to ensure the success of the project. Their views and tips are useful indeed.

Last but not least, terima kasih kepada keluarga, adik-adik dan Nor Rasyidah , yang sentiasa memberi sokongan moral, understanding and courage for me to complete this research. Eros sayang semua.

May ALLAH repay all their kindness.

ii

ABSTRACT

There is growing interest in the integration of microwave filters and antennas in the RF communication system. In practice, filters and antennas that have been designed separately which are linked together in a common reference impedance, 50Ω . Multimode irises is one of the main parameter will be considered to analyze characteristics. In this paper, Substrate Integrate Waveguide (SIW) microstrip antenna and filter is proposed a detailed study of how to design a microstrip square patch antenna with enhanced directive gain. A uniform slotted SIW in circular filter is designed using multilayer technology with multimode irises at the common ground plane. The proposed SIW is simulated and analyzed using CST microwave studio suite software. Simulation and measured results proposed in S-band at frequency from 2 to 4 GHz. This antenna is feed by a 50Ω microstrip line offset from the centre of a patch at bottom layers. Measured results will be presented.

TABLE OF CONTENTS

CHAPTER	PAGE
DECLARATION	i
ACKNOWLEDGEMENT	ü
ABSTRACT	iii
TABLE OF CONTENTS	iv-vi
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF GRAPHS	ix
LIST OF FLOW CHART	ix
LIST OF ATTACHMENTS	x
LIST OF ABBREVIATIONS	xi

CHAPTER

1.0

INTRODUCTION			
1.1	GENERAL	1-2	
1.2	PROBLEM STATEMENT	2-3	
1.3	OBJECTIVE	3	
1.4	SCOPE OF STUDY	3-4	
1.5	ORGANIZATION OF THESIS	4-5	

PAGE

2.0	LITE	RATURE REVIEW	6
	2.1	INTRODUCTION	6-8
		2.1.1 Antenna	8
		2.1.2 Filter	8-9
		2.1.3 Substrate Integrated Waveguide (SIW) integrated filter and antenna	9-10
	2.2	STUDIES ON PREVIOUS WORK	10-15
	2.3	COMPUTER SIMULATION TECHNOLOGY (CST)	15-16
3.0	MET	HODOLOGY	17
	3.1	INTRODUCTION	17-19
	3.2	DESIGN PROCEDURE	20-22
	3.3	FLOW CHART PROCESS	22
	3.4	SIW SQUARE PATCH DESIGN CALCULATION	23
		3.4.1 Calculation of Width (w)	23
		3.4.2 Calculation of the effective dielectri constant	23
		3.4.3 Calculation of the effective length of patch	24
		3.4.4 Calculation of the length extension	24
		3.4.5 Calculation of the resonant length of patch (actual length)	24
		3.4.6 Ground plane dimension	24
		3.4.7 Geometric parameters	25