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Abstract 
Mathematical modeling of hand, foot, and mouth disease 
(HFMD) mainly focuses on compartmental modeling 
approaches. It classifies human population into 
compartments and assumes homogeneity that regards every 
human has equal chance of contacting other individuals in the 
population. However, the transmission of HFMD is 
complicated and dynamic with the interactions of the 
intertwined biomedical and social factors. Describing the 
disease transmission dynamic that involves high-dimensional 
space is mathematically challenging. The graph theoretic 
bipartite network modeling (BNM) approach has the potential 
to handle this challenge by abstracting the real-world disease 
transmission system and incorporating the individual features 
of the bipartite nodes. This study aims to seize the 
advantages portrayed by the BNM approach in capturing the 
heterogeneous features of the entities within a disease 
transmission system. It intends to explore adopting the BNM 
approach in modeling the transmission of HFMD at Kuching, 
Malaysia and identify the hotspot by employing the BNM 
approach comprising a four-stage methodology adapted from 
the BNM methodology framework. The bipartite HFMD 
contact (BHC) network is formulated with the basic building 
block consisting of the location and human nodes. The 
individual parameters of the location and human node are 
incorporated. The resulting BHC network formulated 
comprises 10 human nodes, 20 location nodes, and 23 
edges. Then, six top-ranked location nodes were identified 
and agreed with the chosen benchmark system. The potential 
HFMD hotspots are thus identified by determining the location 
nodes ranking. The result from this study has enabled timely 
and effective measures and policies to be customized 
accordingly by the public health authorities and related 
policymakers.  
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1 Introduction  

Hand, foot, and mouth disease 
(HFMD) is a seasonal and highly 
contagious disease that has caused health 
care alert throughout the world. It has been 
prevalent among the Asia-Pacific countries 
since the 1990s and sees large-scale 
recurrence every few years1. HFMD is a 
common febrile illness associated with 
Non-Polio Enterovirus infections (NPEV)2 
caused by multiple Enteroviruses (EV) 
serotypes. The main etiologic agents 
reported to cause HFMD are human 
enterovirus A71 (EV71), coxsackievirus A6 
(CA6), and coxsackievirus A16 (CA16)3.  
The typical symptoms include fever, painful 
sores, and vesicles in the mouth and skin 
rashes, maculopapular or vesicular on 
hands, feet, buttocks, and sometimes on 
elbows and knees4. However, more severe 
illnesses like meningitis and encephalitis 
are also reported, and critical complications 
associated with neurological, 
cardiovascular, and respiratory problems 
are noticed occasionally5,6 and they could 
be fatal1. Although the vaccine for EV-A71 
has seen encouraging progress in some 
countries in Asia7, there are still no 
warranted antiviral treatments or vaccines 
available to combat HFMD8.  

Infants and young children under five 
years old are significantly more susceptible 
to the disease than the rest of the 
population9. In a study by Chua and Kasri10, 
it is reported that as many as 82.6% of 
HFMD cases are children aged below 6, 
and the majority are among those aged 1 
(18.8%) and 2 (17.9%). After 3 to 5 days 
exposed to the virus, HFMD patients start 
showing the related symptoms1. Most 
patients showing the self-limiting illness 
mentioned above typically recover in 7 to 
10 days without much medical treatment11. 
It is reported that children who succumbed 
to the illness are those within six days of 
onset of the illness, whereas death usually 
ensued within 24 hours after the onset of 
cardiac instability10.  

HFMD incidences in Malaysia showed 
its first outbreak in Sarawak and then 
throughout the country in 1997 mainly due 
to the EV71 pathogen and reported 41 
deaths12. Subsequently, a similar outbreak 
recurs around every two to three years13. In 

2018, a large HFMD outbreak in Malaysia 
recorded more than 40,000 HFMD cases, 
where fatalities were reported14. The 
standard public health measures to handle 
this situation include issuing quarantine 
orders to all infected persons and reducing 
transmissibility by restraining close contact 
and mobility of the infected persons and 
children from high-risk age groups. This 
involves the closure of nurseries, 
playschool, kindergartens, playgrounds, 
and swimming pools, and discouragement 
from bringing young children to crowded 
public places. As a result, it has caused 
substantial social pressure on the 
communities specifically and the nation 
largely. Although the fatality rate is low, the 
social consequences and the extensive 
cost associated with the economy and 
public health sectors caused by large-scale 
outbreaks of HFMD are immense4. It has 
caused a high disease burden for children 
across the world13.  

The primary factors identified are 
closely related to meteorology, and the 
social interaction of the community15. 
People get infected with HFMD by 
contacting the infected patient, the virus-
contaminated surface, water and food, and 
the patient’s respiratory droplets6. With 
suitable conditions outside the host, the 
pathogen EV71 is able to survive for as 
long as three days and can be found in the 
fecal samples of infected patients for more 
than seven weeks16. Besides, the 
coxsackie virus is reported to survive for at 
least two weeks outside the host under 
favorable conditions15. The virus is fond of 
an environment with high humidity and 
temperature, with dry and non-porous 
surfaces15. The studies show that EV71 
can tolerate disinfectants containing even 
75% of alcohol and 95% ethanol is unable 
to entirely deactivate it although it is the 
most recommended minimum 
concentration16. Humans are reported as 
the only known host of EV71; thus, human-
to-human transmission is generally 
assumed1. 

Mathematical modeling of the HFMD 
characteristics, transmission, prediction 
and controlling the outbreak has been 
progressing positively to assist in 
combating the disease and the 
consequences it brings. The methodology 
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used is predominantly the conventional 
compartmental modeling approach. It 
commonly classifies the human population 
into three basic major compartments – 
susceptible, infected, and recovered (SIR). 
More compartments like the exposed (E), 
as in the SEIR model are added to refine 
the model further. Some studies on HFMD 
modeling in Sarawak and Malaysia are 
discussed here. A simple deterministic SIR 
model for HFMD by Chuo and Labadin17 
confirmed the rapid transmissibility of the 
disease, where the susceptible persons 
should be monitored closely. A dynamic 
SEIPR model for HFMD by Chan et al.18 
incorporates the virus incubation period (E) 
and post-infection virus shedding period 
(P) as the additional compartments besides 
the basic SIR compartments. It 
outperforms the SIR model and suggests 
that the liability of the HFMD outbreaks is 
possible based on the minimum proportion 
of a population. With statistical approaches 
as the basis, Mohammad Sham et al.19 and 
Mohammad Sham et al.20 fit the trend 
surface model and time series (auto 
regressive moving average (ARMA)) model 
to the HFMD data, respectively, for 
modeling and forecasting. In a study by 
Mohammad Sham and Krishnarajah21, 
Geographical Information System (GIS) 
mapping is used to describe and observe 
the spatial pattern of the transmission of 
HFMD. 

Nonetheless, researchers stipulated 
that the transmission of HFMD is 
complicated and dynamic with the 
interactions of the intertwined biomedical 
and social factors4. Thus, they conceded 
that it is mathematically challenging to 
describe the disease transmission dynamic 
involving high dimensional space. Besides 
that, the compartmental modeling approach 
ignores heterogeneity and random effects, 
which are vital considerations in developing 
an epidemic22. Consequently, the bipartite 
network modeling (BNM) approach 
particularly stands out in this aspect as it is 
able to abstract the real-world system using 
a network system by capturing the dynamic 
interaction between the two different types 
of nodes in the network. This is achieved 
by integrating individual features that 
define each bipartite node, capturing the 
heterogeneity of the abstracted real-world 

system23. Network models are flexible 
models capable of illustrating the 
interaction between different components 
in a complex system. The models are also 
compatible to demonstrate the 
transmission of diseases in many forms24. 
However, studies employing BNM in 
surveying HFMD by incorporating the 
individual features defining each bipartite 
node are scarce. This paper aims to fill this 
gap and explore the applicability of the 
BNM approach in identifying the HFMD 
hotspot. The contribution of this study lies 
in the results that imply the potential of 
utilizing the BNM approach in advancing 
the study on the characteristics, 
transmission, prediction, and control of 
HFMD outbreaks. The organization of this 
paper is as follows: Section 2 discussed the 
methods employed and the material used 
in this study. Section 3 provided the results 
and their corresponding discussion. Lastly, 
the conclusion of this study is presented in 
Section 4 with the recommendation for 
potential future works. 

2 Methods and Material 

In this section, the discussion for the 
methodology and material used in this 
study is presented. 

2.1 Bipartite Network Modeling in 
Epidemiology 

The epidemiology study on HFMD 
employing the BNM approach is made 
possible with the epidemiology triangle 
(ET)25 that shows the three main 
components of any disease transmission: 
the infectious agent, host, and environment. 
It can be translated intuitively into a three-
node graph. Since environment properties 
define a location, the environment 
component in an ET can logically be 
represented as the location component, 
which is a tangible component24. Similarly, 
the agent component in this study is the 
HFMD viruses, which stay on the surfaces 
of objects (at a location) for a long period. 
Thus, an agent component is inseparable 
from the location component in this study. 
Subsequently, the modified ET used in this 
study consists of two main components: 
location (L) and host (H) as depicted in 
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Figure 1. The environment (V) component 
is enveloped within the location, which 
consists of the HFMD etiologic agents. The 
edge (E) that connects the L and H 
components is dependent on the virus 
survival duration on the surface of an 
object, signified by the time component 
placed above the edge shown in Figure 1. 

The modified ET in Figure 1 
instinctively represents a two-node graph. 
Both the L and H nodes have distinct 
features by nature. This is a bipartite graph 
that consists of two different types of 
nodes, implying the heterogeneity nature of 
the graph. It is taken as the basic building 
block for the HFMD bipartite network this 

study intends to model. Transmission of 
HFMD in this study is assumed to happen 
in the location component, where location 
acts as a medium for the virus to transmit 
from an infected patient to a new host. In 
this study, a graph refers to an unweighted 
bipartite graph for a visual representation of 
a bipartite network, while a network is a 
weighted bipartite graph that delivers both 
the topological and functional relationship 
between the bipartite nodes and their 
respective links. The weight here denotes 
the link weight which is a measure of affinity 
between the bipartite nodes of the 
network24. 

 

 

Figure 1. Basic building block of bipartite HFMD related network model. 

 

2.2 Bipartite Network Modeling 
Methodology 

Since the typical first stage of 
formalizing the feasibility of employing a 
BNM has been established by Kok et al.24, 
the methodology of this study involves four 
stages as presented in Figure 2, adapted 
from Liew et al.26. First, the formation of the 
bipartite graph structure of the HFMD 
transmission network; the locations and its 
hosts. Second, the formulation of the 
HFMD transmission network is coined as 
the Bipartite HFMD Contact (BHC) 
network, where parameters for the location 
and host nodes, and the link weight are 
quantified. Third, the implementation of a 
search algorithm onto the BHC network to 
rank and identify the HFMD hotspot. Lastly, 
the verification or validation, or both for the 
results obtained. 

Figure 2. Bipartite network modeling 
methodology. 

 

Stage 1  

Bipartite HFMD transmission graph 
structure formation 

Stage 2  

Bipartite HFMD contact network 
formulation: quantification of 
1. Location node parameters 
2. Host node parameters 
3. Link weight 

 

Stage 3  

HFMD hotspot identification 

Stage 4  

Verification or validation of results 
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2.3 Study Area and Assumption 

The study location is Kuching, 
Sarawak, Malaysia. The data used in this 
study are intended to depict the number of 
HFMD cases in Kuching, Sarawak from 
June to July 2019. It is generated based on 
the total HFMD cases recorded in Sarawak, 
from the first to the end of Epidemiology 
(EPID) Week 45, which was 47,900 
cases27, as the record of HFMD cases in 
Kuching from June to July 2019 is not 
available. The data generation process 
used in this study is based on the process 
of the dengue study24.  By averaging the 
47,900 cases in Sarawak over the first 45 
EPID weeks, it is assumed that there was 
an average of 1,000 HFMD cases in 
Kuching from June to July 2019. This is 
obtained by assuming 8 weeks from June 
to July of 2019 and considering 12 divisions 
in Sarawak, with Kuching having the highest 
population as the capital of Sarawak. As 
the dengue study where the bipartite 
dengue contact network is formulated 
consists of eight human nodes24, this study 
resorted to using 10 cases or 1% of the 
averaged HFMD cases, which is rounding 
the human nodes size in the dengue study 
to the nearest ten, to explore the 
applicability of BNM in this study. These 10 
cases were assumed as patients of 
preschoolers and elementary schools’ 
children because these are the most 
susceptible age group of the population 
reported2,3,9. 

The data related to HFMD patients, 
and the locations visited or related to the 
patients are not available either. This is 
because the real data of patients’ health 
records in Malaysia are under the Personal 
Data Protection Act 2010 (PDPA) and are 
not accessible to the public. The patients’ 
data in terms of their addresses and the 
locations they visited are generated in this 
study by identifying related places around 
Kuching city. For the exploration purpose of 
this study, 20 locations were determined in 
correspondence to the typical demography 
of the 10 patients assumed above. The 
number of locations is decided by taking 
the nearest ten of the number of location 
nodes in the dengue study whose bipartite 
dengue contact network formulated 
consists of 19 location nodes24. These 

locations include the actual residential 
houses, kindergartens, elementary schools, 
and other public places typically visited by 
the patients. Consequently, 10 distinct 
individuals and 20 unique locations are 
assumed as available in this study. 

The date when the patient first shows 
symptoms is assumed within the two 
months (June and July 2019) time frame. The 
addresses used in this study are selected 
from within Kuching city using the Global 
Positioning System (GPS) coordinates 
obtained from Google Map. The edge in 
this study is formed when an HFMD patient 
visits a specific location. Using a random 
binary matrix generator, a 0-1 matrix of 20 
(location) by 10 (human) dimensions is 
generated and taken as the link matrix, 
where 1 represents the existence of a link 
and 0 the absence of it. There are 23 links 
formed between the human nodes and the 
location nodes in this study. 

The formulation of the bipartite HFMD 
network model is based upon the 
assumption that disease transmission 
follows the traditional epidemiology 
triangle25, which is then modified as shown 
in Figure 1. As the HFMD viruses are 
transmitted not only through human-to-
human contact but also via contact with 
exterior surfaces contaminated with the 
viruses, the location nodes in this study are 
selected places in Kuching, Sarawak and 
focus on the exterior’s characteristics of the 
places. 

2.4 Formation of Graph Structure 

The basic building block shown in 
Figure 1 is used in this study where the host 
vertex is substituted as the human node 
(H), representing the HFMD patients in 
Kuching, Sarawak. The time parameter of 
an edge in Figure 1 portrays the possibility 
that transmission of the virus from a location 
to humans occurs only within a due amount 
of time. The 10 HFMD patients are denoted 
as 10 human nodes (H). The 20 locations 
that the patients have visited are denoted 
as the location node (L). The 23 links are 
denoted as the edge (E), where for 
example, an edge formed between L1 and 
H1 is labelled as L1H1. Using the above-
mentioned data, the bipartite graph structure 
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termed the BHC graph of the BHC network 
is formed. It is defined as in Equation 1. 

 GBHC = (H, L, E) (1) 

where H = {H1, H2, H3, H4, H5, H6, H7, 
H8, H9, H10}, L = {L1, L2, L3, L4, L5, L6, 
L7, L8, L9, L10, L11, L12, L13, L14, L15, 
L16, L17, L18, L19, L20} and E = {L1H1, 
L2H2, L3H3, L4H4, L5H5, L6H10, L7H5, 
L8H1, L8H8, L9H6, L10H7, L11H4, L12H2, 
L12H5, L13H9, L14H6, L15H10, L16H1, 
L16H9, L17H6, L18H3, L19H8, L20H1}. 

2.5  Formulation of Bipartite Network 

The formulation of a bipartite network 
involves three processes: parameter 
quantification for the location and host or 
human nodes, and quantification of the link 
weight. Firstly, based on past studies, two 
categories of location node parameters are 
identified: the location physical parameters 
and the location-specific meteorological 
parameters, based on past studies. Hence, 
four parameters have been decided in this 
study for the location node based on the 
studies conducted before. They are the 
type of surface for objects in a location 
(Stj)15, temperature (Ti:j)15, humidity (Ki:j)15 
and the frequency of a location visited by a 
human (Fli.)24. The surface types for the 
location are assumed based on the 
weather of the day. The surface types are 
considered dry and porous on a sunny day 
while they are considered non-dry and not 
porous if it rains. The weather in Kuching is 
obtained from AccuWeather 
(https://www.accuweather.com). As HFMD 
viruses stay longer outside on dry and non-
porous surfaces, the surface types of a 
location visited by a human are given by 
Equation 2. 

 Sti= {
1

location i has

dry and non-porous surface

0
location i does not have

dry and non-porous surface

 (2) 

Visits of HFMD patients to a location 
directly affect the amount of HFMD viruses 
contended by the location. Thus, Fli is 
included in the BHC network for location 
node i. It is given as in Equation 3 where 
Fhj:i is a parameter of the human node 
shown in Equation 4. The two environmental 
parameters of a location node are 

temperature (Ti:j) and humidity (Ki:j). The 
average temperature and humidity of a 
location for the past seven days right 
before a human was diagnosed with HFMD 
is taken. 

Fli= ∑[(Link_Matrix
BHC Network

[LiHj]) × Fhj:i × Sti]

10

j=1

 

 (3) 
where i = {1, 2, …, 20} 

      j = {1, 2, …, 10} 
  Link_Matrix

BHC Network
[LiHj] 

= {
1 if Li is linked to Hj        

0 if Li is not linked to Hj
  

 

Secondly, two parameters are 
determined for the human node. They are 
the total duration of stay in a location (Td) 
and the number of times a human visited 
the location (Fh). Td is the time recorded in 
minutes of the total duration of stay of a 
human in a location. Fh denotes the number 
of times a human node j visited a location 
node i and is given in Equation 4 where i = 
{1, 2, …, 20} and j = {1, 2, …, 10}. 

Fhj:i = {
1 if Hj visits Li n times where n ∈ Z+

0 if Hj does not visit Li                           
 (4) 

Thirdly, the link weight is computed 
and named HFMD contact strength (HCS). 
It represents the link affinity between the 
human and location nodes. A stronger 
strength between the two bipartite nodes 
signifies more attachment between the 
location node and the specific human node. 
The summation rule is used to quantify 
HCS24 and is defined in Equation 5. HCS is 
computed using the R programming 
language. Normalization for all the parameter 
values is conducted so that the respective 
numerical values are ranged between 0 
and 1. 

HCSi:j= (∑ Location_Node_Parameters
i
) + 

               (∑ Human_Node_Parameters
j:i

) 

         =(Ti:j + Ki:j + Fli:j) + (Tdj:i + Fhj:i) (5) 

2.6 Ranking of Location Nodes 

Lastly, ranking the location nodes and 
identifying the HFMD hotspot are carried 
out by implementing a ranking algorithm. 
Hypertext Induced Topic Selection (HITS) 



Journal of Smart Science and Technology, 2023, 3(1) 

31 

or the hub and authorities link analysis 
algorithm is used to rank the location nodes28. 
The HCS matrix obtained and the BHC 
network in the previous process serves as 
an input and the searching space to the 
HITS algorithm, adopting the power 
iteration method. Values of the resulting 
principal eigenvectors are procured as the 
measurement vector density termed the 
HFMD Hotspot Ranking (HHR) value. HHR 
is valued between 0 and 1 and is the ranking 
value used to rank the location nodes. A 
location with a high vector density is 
considered the reservoir of the HFMD 
viruses and people who visit the location 
will have higher chances of contracting the 
disease. The higher the vector density of a 
location, the higher it will be ranked, and 
the top-ranked locations could be identified 
as the hotspot of HFMD in this study. 

2.7 Evaluation of Results 

Two-step verification is conducted to 
verify the results obtained: benchmark 
verification and analytical verification. 
Benchmark verification is carried out using 
the Root Mean Square Error (RMSE) 
computed for the ranking values (HHR) 
acquired from the benchmark system and 
the BHC network. The RMSE threshold 
value of less than 0.05 is set to verify a model 
as acceptable29. Analytical verification using 
Spearman’s Ranking Correlation 
Coefficient (SRCC) is applied to compare 
the ranking of location nodes between the 
hub (location) matrix and the HFMD hotspot 
ranking values (HHR). SRCC is suitable for 
the measurement of closeness for the 
ranking of small size networks24. The SRCC 
threshold value greater than 0.70 is set to 
verify a model, indicating a positive and high 
correlation30. This study resolves to consider 
the BHC network model verified only when 
it fulfils the above conditions where RMSE is 
less than 0.05 and SRCC is greater than 
0.70. In the next section, the results obtained 
will be presented and discussed. 

 

 

 

3 Results and Discussion 

The implication of interpreting the results 
obtained in this study is subject to the 
assumptions and scope of the study. Using 
the quantified parameters, the respective 
normalized values of the parameters for the 
individual location nodes and human nodes 
are presented in Table 1. It shows the 
parameters’ value of the location node i, 
which are temperature (T), humidity (K), 
and frequency of a location visited by a 
human (Fl); and the parameters’ value of 
the human node j, which are a total duration 
of stay in a location (Td) and the number of 
times a human visited the location (Fh). 
The first row in Table 1 reveals that human 
node 1 visited location node 1. In this visit, 
the normalized value of the temperature (T) 
and humidity (K) of location node 1 are 
0.8541 and 0.8183, frequency of location 
node 1 visited by human node 1 (Fl) is 
0.9000. Besides that, the normalized value 
of the total duration of stay in location node 
1 by human node 1 (Td) is 0.6375, whereas 
human node 1 visited location node 1 (Fh) 
0.9000 time. The link weight (HCS) 
calculated from Equation 5 is given in Table 
2, also the HCS matrix of the BHC Network. 
It shows the weight of 23 links formed 
between the bipartite nodes in the BHC 
network. The first row shows that the 
weight of the edge that linked location node 
1 and human node 1 is 4.1099. With the 
location and human nodes parameters and 
the link weight quantified and the values 
computed, the resulting BHC network is 
presented in Figure 3. Figure 3 is the 
graphical representation of the BHC network. 
The values presented in each node are the 
normalized values of the parameters 
quantified for each node. For location node 
1, the normalized value of the temperature, 
humidity, and frequency of visit at the 
location when human node 1 visited it (T1:1, 
K1:1 and Fl) are 0.8541, 0.8183, and 0.9, 
and the link weight is 4.1099. As for human 
node 1, the normalized value of the 
duration of stay at location node 1 (Td1:1), 
location node 8 (Td1:8), location node 16 
(Td1:16), and location node 20 (Td1:20) are 
0.6375, 0.5475, 0.4500, and 0.6900; and 
human node 1 visited each of these four 
locations (Fh) 0.9000 time. 
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Table 1. Parameter values of location and human nodes. 

L H T K Fl Td Fh 

1 1 0.8541 0.8183 0.9000 0.6375 0.9000 

2 2 0.8755 0.9000 0.9000 0.7088 0.9000 

3 3 0.8816 0.8438 0.9000 0.3750 0.9000 

4 4 0.8633 0.8234 0.9000 0.6000 0.9000 

5 5 0.8602 0.6834 0.9000 0.9000 0.9000 

6 10 0.8786 0.8387 0.9000 0.6750 0.9000 

7 5 0.8786 0.8183 0.9000 0.3750 0.9000 

8 
1 0.8724 0.8101 0.9000 0.5475 0.9000 

8 0.8724 0.8101 0.9000 0.5475 0.9000 

9 6 0.8602 0.8183 0.9000 0.5588 0.9000 

10 7 0.8510 0.7314 0.9000 0.4500 0.9000 

11 4 0.8602 0.8183 0.9000 0.4500 0.9000 

12 
2 0.9000 0.8244 0.9000 0.5475 0.9000 

5 0.8633 0.8234 0.9000 0.5475 0.9000 

13 9 0.8939 0.8622 0.9000 0.6975 0.9000 

14 6 0.8908 0.8275 0.9000 0.7125 0.9000 

15 10 0.8633 0.7907 0.9000 0.5475 0.9000 

16 
1 0.8847 0.8520 0.9000 0.8250 0.9000 

9 0.8939 0.8622 0.9000 0.8250 0.9000 

17 6 0.8816 0.8162 0.9000 0.4875 0.9000 

18 3 0.8755 0.7774 0.9000 0.5550 0.9000 

19 8 0.8388 0.7600 0.9000 0.8400 0.9000 

20 1 0.8633 0.8571 0.9000 0.6900 0.9000 

 

Table 2. HFMD contact strength (HCS) of BHC network. 

 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 

L1 4.1099 0 0 0 0 0 0 0 0 0 

L2 0 4.2843 0 0 0 0 0 0 0 0 

L3 0 0 3.9004 0 0 0 0 0 0 0 

L4 0 0 0 4.0867 0 0 0 0 0 0 

L5 0 0 0 0 4.2436 0 0 0 0 0 

L6 0 0 0 0 0 0 0 0 0 4.1923 

L7 0 0 0 0 3.8719 0 0 0 0 0 

L8 4.0300 0 0 0 0 0 0 4.0300 0 0 

L9 0 0 0 0 0 4.0373 0 0 0 0 

L10 0 0 0 0 0 0 3.8324 0 0 0 

L11 0 0 0 3.9285 0 0 0 0 0 0 

L12 0 4.0719 0 0 4.0342 0 0 0 0 0 

L13 0 0 0 0 0 0 0 0 4.2536 0 

L14 0 0 0 0 0 4.2308 0 0 0 0 

L15 0 0 0 0 0 0 0 0 0 4.0015 

L16 4.3617 0 0 0 0 0 0 0 4.3811 0 

L17 0 0 0 0 0 3.9853 0 0 0 0 

L18 0 0 4.0079 0 0 0 0 0 0 0 

L19 0 0 0 0 0 0 0 4.2388 0 0 

L20 4.2104 0 0 0 0 0 0 0 0 0 
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Figure 3. Bipartite HFMD Contact (BHC) network. 

 

The HHR generated for each location 
node is presented in Table 3. The location 
node L16 ranked the top among all the 20 
location nodes because it has the highest 

HHR value. It implies that the infectious 
HFMD vector density is the highest in L16. 
The ranking of all the location nodes is 
given in Table 3 too. 

 

Table 3. Ranking of location nodes. 

Location node HHR value  Location node HHR value 

L16 5.985448E−01  L14 4.978936E−05 

L8 5.192841E−01  L9 4.751222E−05 

L20 4.074902E−01  L17 4.690025E−05 

L1 3.977640E−01  L6 3.705022E−08 

L13 1.712765E−01  L15 3.536397E−08 

L19 1.359499E−01  L4 1.665677E−08 

L12 1.726117E−03  L11 1.601198E−08 

L5 1.093300E−03  L18 1.017498E−08 

L7 9.975378E−04  L3 9.902053E−09 

L2 7.225886E−04  L10 1.238252E−14 

 
 

The benchmark system used in the 
benchmark verification is UCINET 631. The 
ranking values for the location nodes 
produced by the benchmark system are the 
benchmarked HHR and are normalized 
accordingly. The resulting RMSE is 
0.0005640, which is less than 0.05. For the 

analytical verification, the sum of the hub 
matrix is calculated and ranked. Then, it is 
compared with the ranking of the location 
nodes based on HHR using SRCC. The 
SRCC value obtained is 0.874, which is 
greater than 0.07. It shows that the HHR of 
the location node is positively and strongly 
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correlated with the hub matrix for the 
location nodes. Both RMSE and SRCC 
computed have fulfilled the threshold value 
set, implying the verification of the BHC 
network model. 

The bipartite HFMD network model 
formulated using the assumed data 
managed to rank the location nodes and 
identify the hotspot of HFMD. The results 
show that the top six location nodes are 
L16, L8, L20, L1, L13, and L19, as 
presented in Table 3. The factors 
contributing to this ranking are the 
parameters of the location node and 
human node. From the basic building block 
(Figure 1), the crucial components to the 
identification of the HFMD hotspots lie in 
the parameters of the location and the 
mobility of the human. The parameters 
quantified and incorporated in this study 
show the importance of understanding the 
dynamic interactions between the 
biomedical and the social factors of the 
disease. The factors include the physical 
nature of a location, the biological nature of 
the disease, the demography of humans 
and the mobility or social context of 
humans. Besides the nature of HFMD 
diseases, and the rest of other factors are 
unique depending on the geographical 
location of the region of a country, which is 
closely related to the meteorological 
characteristics or its environmental 
features.  

Similarly, one human is different from 
the other by nature and thus, it is unrealistic 
to assume the whole population is 
homogeneous in modeling the disease. A 
systemic view is needed to combat the 
HFMD outbreak, where it is viewed as a 
system, a real-world system. The bipartite 
network modeling approach shows its 
potential in abstracting the HFMD system 
by incorporating the distinct features of 
each location node and human node to 
capture the interaction between the 
locations and humans. 

Appropriate measures and policies 
could be implemented by identifying the 
high potential locations in the transmission 
of the highly infectious HFMD diseases. 
Since there is no one-size-fit-all method in 
dealing with the HFMD outbreak, customized 
practices and decisions based on the 
geographical and social characteristics of 

the identified (location) hotspots could be 
executed accordingly by the public health 
authorities and related policymakers. By 
specifying the targeted locations 
(hotspots), it could help relieve the disease 
burden for children and the social pressure 
on the communities and optimize the costs 
incurred in dealing with the outbreak 
compared to the situations where public 
health measures are implemented to the 
whole area. 

4 Conclusion 

In this study, the bipartite network 
modeling approach has been employed to 
explore the modeling of a bipartite HFMD 
network and the identification of its hotspot, 
which is verified using benchmark and 
analytical verifications. The basic building 
block of the network consists of two nodes: 
the location node and the human node. The 
individual parameters of each node type 
are incorporated. The location node 
parameters comprise the type of surface 
for the objects in a location, the 
temperature and humidity of the location, 
and the frequency of visits by the human. 
The total duration of stay of a human at a 
location and the number of times the 
human visits the locations are the 
parameters decided for the human node. 
The weight of an edge that joins two types 
of nodes is quantified using the summation 
rule. Using the HITS algorithm, the location 
nodes are ranked where hotpots of the 
disease can be identified. By identifying the 
high potential locations for the transmission 
of highly infectious HFMD diseases, timely 
and effective measures and policies could 
be customized accordingly by the public 
health authorities and related 
policymakers. BNM is a potential approach 
in epidemiology study, particularly to 
identify potential hotspots for infectious 
disease. Possible future studies include 
further evaluation of the model using real 
data in confirming and validating the BNM 
approach presented and researching the 
possibility of other potential parameters in 
formulating the network model for HFMD. 
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