UNIVERSITI TEKNOLOGI MARA

DELAMINATED MXENE FOR EFFICIENT CHROMIUM REMOVAL VIA PHOTOCATALYTIC PROCES

NUR SHAFIQAH BINTI JAMALUDDIN

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

August 2022

ABSTRACT

Hexavalent chromium (Cr(VI)) is considered a major hazardous heavy metal in water bodies that can cause severe effects to human health and the environment. Over the years, myriad photocatalyst have been used to remove Cr(VI) from wastewater. However, broad bandgap energy and high electron recombination rate of these photocatalysts have limit their photocatalytic performance. Therefore, an efficient photocatalyst for Cr(VI) removal in wastewater is strongly demanded. In this study, the structural, physicochemical and thermal properties of delaminated MXene have been successfully investigated. The performance of synthesised delaminated MXene on Cr(VI) removal was evaluated at different pHs, photocatalyst loadings, and initial concentrations of Cr(VI). After that, the adsorption isotherms and the kinetic models of synthesised delaminated MXene on Cr(VI) removal was also examined. Based on the results, the optimum operating conditions on Cr(VI) removal by the synthesised delaminated MXene were obtained at pH 4 with photocatalyst loading of 1.5 g/L, and Cr(VI) concentration of 5 mg/L. Under the optimized reaction conditions, the removal of Cr(VI) was 100%. The highest removal efficiency of Cr(VI) via photocatalysis over various concentrations was approximately 28.9% higher than adsorption, verifying a synergistic effect of adsorption and photocatalysis by the delaminated MXene. The isotherm of Cr(VI) adsorption was fitted by the Langmuir model ($R^2 > 0.9848$), which is better than the Freundlich model ($R^2 > 0.8824$). Furthermore, the time dependence of Cr(VI) adsorption was well expressed by the pseudo-second-order kinetic model with $R^2 > 0.9999$. The photocatalysis study presented a pseudo-first-order kinetic model to describe the removal of Cr(VI) under UV-light irradiation. The kinetic data showed that the kinetic constant using delaminated MXene was about 2.8 times higher with respect to MXene, suggesting that the delaminated MXene possesses a higher photocatalytic reduction of Cr(VI). In conclusion, the synthesised delaminated MXene has an excellent ability to reduce and remove Cr(VI) in water via photocatalysis and has a great potential to be used in industrial wastewater.

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the Most Gracious and the Most Merciful.

My greatest appreciation and thanks are to Him for rewarding me with lots of perseverance and patience in enduring lots of challenging obstacles. Alhamdulillah, I can carry out all tasks and works given in the master journey.

Secondly, special appreciation goes to my supervisor, Ts. Dr. Nur Hashimah Alias, for her guidance and constructive comments. Next, special thanks to my supportive cosupervisors, Prof. Dr. Sadaki Samitsu, Associate Professor Ir. Ts. Dr. Hidayati Othman, and Ts. Dr. Fauziah Marpani for continuous encouragement and research input.

My appreciation also goes to the School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, which provided my research project facilities.

Finally, I would like to express my appreciation to my dearest parents, lab assistants, and colleagues who contributed brilliant ideas to my research project.

TABLE OF CONTENTS

CON	FIRMA	TION BY PANEL OF EXAMINERS	ii				
AUT	HOR'S	DECLARATION	iii				
ABSTRACT							
ACK	ACKNOWLEDGEMENT						
TAB	LE OF	CONTENTS	vi				
LIST OF TABLES LIST OF FIGURES LIST OF PLATES							
				LIST	OF SY	MBOLS	xiv
				LIST	OF AB	BREVIATIONS	XV
CHA	PTER (ONE INTRODUCTION	1				
1.1	Resea	rch Background	1				
1.2	Proble	em Statement	3				
1.3	Objec	tives of the Study	4				
1.4	Scope	cope and Limitation of the Study					
1.5	Significance of the Study						
СНА	PTER 7	FWO LITERATURE REVIEW	7				
2.1	Water pollution by heavy metals						
	2.1.1	Chromium (VI) as a Model of Heavy Metal	9				
	2.1.2	Conventional Treatment for Cr(VI) Removal from wastewater	10				
	2.1.3	Overview of Photocatalytic Process	14				
2.2	Overview of MXene						
	2.2.1	Structure of MXene	16				
	2.2.2	Physicochemical properties of MXene	17				
	2.2.3	Strategies of MXene Synthesis	20				
	2.2.4	Applications of MXene in photocatalysis	24				
	2.2.5	Adsorption Affinity of MXene towards Heavy Metals	25				

	2.2.6	Delaminated MXene	27
2.3	Effect of Operating Parameters on Cr(VI) Removal		
	2.3.1	Effect of pH	29
	2.3.2	Effect of Photocatalyst Loading	30
	2.3.3	Effect of Cr(VI) Initial Concentration	31
2.4	Adsorp	ption Isotherm and Kinetic Studies	32
	2.4.1	Adsorption Isotherm	32
	2.4.2	Kinetic Study of Cr(VI) Removal via Photocatalytic Process	34
2.5	Conclu	asion	37
СНА	PTER 1	THREE RESEARCH METHODOLOGY	38
3.1	Introdu	uction	38
3.2	Materi	als	40
3.3	Synthesis of delaminated MXene		
3.4	Characterisation		
	3.4.1	Field Emission Scanning Electron Microscopy	41
	3.4.2	X-Ray Diffraction	41
	3.4.3	Energy Dispersive X-Ray	41
	3.4.4	Fourier Transform Infrared Spectroscopy	41
	3.4.5	X-Ray Photoelectron Spectroscopy	42
	3.4.6	Nitrogen Adsorption/Desorption Analysis	42
	3.4.7	Thermogravimetric Analysis	42
	3.4.8	Ultraviolet-Visible Near-Infrared Spectroscopy	42
	3.4.9	Photocatalysis Experiment	43
	3.4.10	Adsorption Isotherm and Kinetic Studies	44
СНА	PTER F	FOUR RESULTS AND DISCUSSION	46
4.1	Introduction		
4.2	Structural, physicochemical and thermal properties of MXene and delam		
	MXene photocatalyst		
	4.2.1	Field Emission Scanning Electron Microscopy	47
	4.2.2	X-Ray Diffraction	48
	4.2.3	Energy Dispersive X-Ray	49