UNIVERSITI TEKNOLOGI MARA

DEGRADATION OF ORANGE II DYE USING PEROVSKITE COMPOUNDS WITH MOLYBDENUM ION AS ACTIVE PHASE

NADHRATUL NUR AIN BINTI ABDUL RAHMAN

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

August 2022

ABSTRACT

Heterogeneous chemical oxidation is a promising technique and effective treatment in degrading dye-contaminated wastewater which generated highly oxidizing radicals such as hydroxyl (OH) radicals. Perovskite is a potential decent ceramic metal oxides catalyst with the general formula of $AB_xB'_yO_3$ has been applied as a heterogeneous catalyst for dye-contaminated wastewater degradation under ambient conditions with and without the aid of oxidants. Substitution of B-site cation plays a crucial role in modulating the overall catalytic performance of the perovskite rather than A-site cation. Despite its high catalytic performance, these catalysts suffered severe leaching problem during heterogeneous catalysis. Therefore, substitution of alternative B-site metal cations in perovskite to minimize the leaching problem while maintaining adequate catalytic performance is critical. However, the substitution of molybdenum as an active phase for B-site cation within the perovskite structure is still scanty. Hence, this research aims to synthesize and characterize substituted molybdenum derived perovskite catalysts and investigate the resultant catalyst's stability at the optimum oxidative degradation conditions. A series of substituted molybdenum derived perovskite catalysts (CaMo_xCu_yO₃) were synthesized using the EDTA-citric acid complexation method by varying the precursor loading molar ratio (Mo:Cu = x:y). The catalytic activity of resultant catalysts was evaluated in oxidative degradation using acid orange II (OII) dye solution as a model pollutant. The perovskite catalysts were characterized using field emission scanning electron microscopy, nitrogen sorption, X-ray diffraction, Response surface methodology (RSM) facilitated the chemisorption analysis. operational conditions' optimization for OII oxidative degradation at the optimum composition of $CaMo_xCu_yO_3$. Then, the catalyst's stability was subsequently tested at optimum operational reaction conditions. The optimum perovskite composition was found at CaMoCu_{0.5}O₃, which exhibited 46.43% OII removal without the aid of an oxidant. Interestingly, the removal of OII solution increased two times higher up to 98.43% in the presence of oxidant within 30 minutes reaction compared to others composition loading ratio. From RSM analysis, optimum operational reaction conditions were proposed at catalyst dosage of 0.99 g L⁻¹, 20.80 mg L⁻¹ initial concentration of OII solution, 5.42 pH of the solution and 0.87 g L⁻¹ concentration of H₂O₂ at 15 min of reaction time. The experimental validation of OII removal was found to be approximately 91.19% at the proposed optimal conditions. The experimental OII removal values were aligned with the predicted value derived from the proposed quadratic model with a slight difference of 3.98%. Uniquely, the CaMoCu_{0.5}O₃ perovskite exhibited a slight decrease in the overall catalytic performance by 26% in the first three cycles, which stabilized afterwards until the fifth cycle of reaction with minimal leached metal ions' concentration within the allowable regulatory limits. These results provide new insights into the unique role of substituted molybdenum as an active phase in enhancing the overall catalytic performances for oxidative degradation of dyecontaminated wastewater. In summary, findings of this work support the Malaysia's Twelfth Malaysia Plan and United Nations' goal in improving access to safe and clean water.

ACKNOWLEDGEMENT

Praise to be Allah s.w.t, Lord of all the Worlds and peace be upon the Honourable Prophet Muhammad s.a.w., His family and Companions.

In order to complete my Master journey, gratitude is extended to Allah s.w.t for being able to give me guidance, strength, patience, perseverance as well as challenge to complete this challenge journey.

I am utmost grateful and thankful to my research supervisor, Dr Nor Aida Zubir whom endless guidance, encouragement, motivate me patiently, caring and continuously supports throughout my Master journey. This thankful of guidance and sharing knowledge also goes to my co-supervisors Puan Rasyidah Alrozi and Dr Hawaiah Imam Maarof.

Foremost, I extend my hearthiest appreciation to my beloved and cherished mother, Puan Nadhrah Abu Bakar and my father Abdul Rahman Ahamed and my younger brother, Muhammad Fadhil and his wife which constantly uplifting my motivation towards the accomplishment of completion of this journey. They are my pillar of strength throughout this journey. Without their unconditional love, understandings and supports, I will not make it as I am to date.

My extend gratitude also goes to helpful PKK's lecturers, entire staf and science laboratory assistant especially Puan Khaironniswah Abdul Samad, Puan Faezah Md Desa, Puan Salamiah Abdul Hamid, Cik Siti Maznah Hj Sulaiman and Encik Saiful Anuar Roswan that willing to spend time helping and facilitating me throughout the experimental study. I am grateful and sincerely appreciate to my good friends that always help, support, and give a positive encouragement when I am in need. May Allah protect and bless our friendships forever.

Sincerely,

NADHRATUL NUR AIN ABDUL RAHMAN

AUGUST 2022

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS					
AUTHOR'S DECLARATION					
ABSTRACT					
ACKNOWLEDGEMENT					
TABLE OF CONTENTS					
LIST OF TABLES					
LIST OF FIGURES					
LIST OF SYMBOLS					
LIST OF ABBREVIATIONS					
LIST OF NOMENCLATURE					
CHAF	PTER (ONE INTRODUCTION	1		
1.1	Resear	ch Background	1		
1.2	Proble	m Statement	3		
1.3	Resear	ch Objectives	5		
1.4	Scopes	s and Limitations	6		
1.5	Signifi	cance of Study	7		
CHAPTER TWO LITERATURE REVIEW					
2.1	Introdu	action	8		
2.2	Dye- contaminated wastewater 8				
2.3	Dye-contaminated wastewater treatment 10				
2.4	Perovskite Catalysts 12				
	2.4.1	A-site perovskite catalyst	14		
	2.4.2	B-site perovskite catalyst	20		
	2.4.3	Conclusion and research gap on perovskite catalysts	26		
2.5	Influer	Influence of operational conditions in heterogeneous chemical oxidation usir			
	perovskite catalyst 29				
	2.5.1	Effect of Catalyst Dosage	29		

	2.5.2	Effect of Initial Concentration of Dye	29		
	2.5.3	Effect of pH	30		
	2.5.4	Effect of Concentration of Oxidant	30		
2.6	Optim	Optimization of operational condition of heterogeneous chemical oxidation			
	using	perovskite catalyst	30		
	2.6.1	Design of Experiment (DoE)	34		
	2.6.2	Response Surface Methodology (RSM)	34		
	2.6.3	Central Composite Design (CCD)	35		
2.7	Stability of Perovskite Catalyst				
2.8	Reacti	Reaction kinetics 3			
CHA	PTER 1	THREE RESEARCH METHODOLOGY	40		
3.1	Introd	uction	40		
3.2	Chem	icals and Reagents	42		
3.3	Synthesis of CaMo _x Cu _y O ₃ Perovskite Catalysts 42				
3.4	Catalytic Performance of CaMoxCuyO3 Perovskites Catalysts in Oxidative				
	Degra	dation of OII dye solution	44		
3.5	Chara	cterization of substituted molybdenum-derived perovskite cataly	st 45		
	3.5.1	Field Emission Scanning Electron Microscopy – Energy Disp	ersive X-		
		ray Spectroscopy (FESEM-EDS)	45		
	3.5.2	Nitrogen Sorption	45		
	3.5.3	X-ray Diffraction (XRD)	46		
	3.5.4	Temperature-Programmed Chemisorption Analysis	46		
3.6	Operational parameters' optimization of OII's oxidative degradation using				
	optimized perovskite catalyst				
	3.6.1	Reaction Kinetics	51		
	3.6.2	Metal Leaching Analysis	51		
	3.6.3	Total Organic Carbon (TOC) Analysis	51		
3.7	Stabili	ity and Recyclability Test	52		
CHA	PTER I	FOUR RESULTS AND DISCUSSION	53		
4.1	Introduction				