UNIVERSITI TEKNOLOGI MARA

WASTE COOKING OIL BASED EMULSION LIQUID MEMBRANE FOR ZINC EXTRACTION FROM AQUEOUS SOLUTION

AFIQAH TASNEEM BINTI ABD KHALIL

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

August 2022

ABSTRACT

Zinc was identified as one of the most toxic heavy metals and often found contaminating the water sources as a result of inefficient treatment of industrial effluent. In this work, Emulsion Liquid Membrane (ELM) was proposed as a method to minimize the concentration of zinc ions in an aqueous solution. Instead of the common petroleumbased diluent, the emulsion is reformulated with waste cooking oil (WCO) which was collected from the food sector as a sustainable and cost-effective diluent. The formulation also includes Bis(2-ethylhexyl) phosphate (D2EHPA) as carrier, Span 80 as surfactant, sulfuric acid (H₂SO₄) as internal phase while zinc sulfate (ZnSO₄) solution was used as the external phase. The WCO characterization and emulsion formation studies were first carried out by utilizing an electronic rheometer, microscope and FTIR analysis. The liquid-liquid extraction (LLE) method was then used to confirm the compatibility of WCO with D2EHPA for the extraction of zinc ions from the external phase, as well as to investigate the extraction equilibria of zinc extraction in ELM and the external phase pH. To obtain the best-operating conditions for zinc extraction using the newly formulated ELM, the extraction time and speed, carrier, surfactant and internal phase concentrations, and W/O ratio were varied. 95.17% of zinc ions were removed under the following conditions; 0.001M of H₂SO₄ in external phase, 700 rpm extraction speed for 10 minutes, 8 wt% of carrier and 4 wt% of surfactant concentrations, 1:4 of W/O ratio and 1 M of internal phase concentration. The use of WCO was proven as the alternative green diluent in ELM method substituting the toxic petroleum-based diluents. The findings of this study shall serve as a milestone in the development of a safer technology to treat heavy metal ions from aqueous solutions.

ACKNOWLEDGEMENT

First and foremost, I would like to express gratitude to Allah, Lord of the World who has granted me the opportunity to further my study in Master of Science and the strength to finally complete my research.

Special thanks to my supervisors, Dr Wahidah Binti Puasa and Prof Ir Dr Abd Latif Ahmad who have supported me in their best way to ease my journey. My utmost gratitude is to Mr Meor Muhammad Hafiz Bin Shah Buddin who has been relentlessly guiding me with patience despite all the setbacks and failures along the way.

My appreciation goes to my parents and sister for their unwavering faith in me throughout all my study phases. Thank you for being my biggest supporters and best friends who have always been there. May Allah bestow all of you with the best rewards possible.

Finally, greatest love for myself for not giving up and staying strong no matter what life has thrown at her.

TABLE OF CONTENTS

CON	ii			
AUT	iii			
ABS	iv			
ACF	v			
TAB	vi			
LIST	ix			
LIST	Г OF FI	GURES	X	
LIST	Г OF SY	MBOLS	xiii	
LIST	ГOFAE	BREVIATIONS	XV	
LIST	xvii			
CHA	APTER	ONE INTRODUCTION	1	
1.1	Resea	arch Background	1	
1.2	Proble	em Statement	3	
1.3	Objec	ctives	6	
1.4	Scope	e and Limitation of Research	6	
1.5	Signit	ficance of Research	7	
CHA	APTER '	TWO LITERATURE REVIEW	8	
2.1	Introd	luction	8	
2.2	Liqui	Liquid Membrane Configurations		
	2.2.1	Bulk Liquid Membrane	11	
	2.2.2	Supported Liquid Membrane	11	
	2.2.3	Emulsion Liquid Membrane	12	
2.3	ELM	13		
	2.3.1	Internal phase	15	
	2.3.2	Membrane phase	15	

	2.3.3	Carrier	16
	2.3.4	Surfactant	17
	2.3.5	Diluent	19
2.4	Green Diluent in ELM		
	2.4.1	Characteristics of Vegetable Oils as Diluent in ELM	24
	2.4.2	Palm Waste Cooking Oil as Green Diluent	26
2.5	Transport Mechanism in Liquid Membrane		
	2.5.1	Simple Transport	31
	2.5.2	Facilitated Transport	32
2.6	Extrac	ction Equilibria	34
СНА	PTER 1	THREE METHODOLOGY	37
3.1	Resea	rch Flowchart	37
3.2	Chemicals		39
3.3	Diluent Compatibility Study		
3.4	Waste Cooking Oil (WCO) Characterization Study		
3.5	Performance Evaluation of ELM		
	3.5.1	Surfactant Compatibility Study	41
	3.5.2	Water-Oil (W/O) Emulsion Preparation	42
	3.5.3	Zinc Extraction using ELM	42
	3.5.4	Determination of Zinc Extraction Efficiency	43
СНА	PTER I	FOUR RESULTS AND DISCUSSION	44
4.1	WCO Characteristics and Emulsion Formation		
	4.1.1	Surfactant Compatibility	46
4.2	Intera	47	
	4.2.1	Liquid-liquid Extraction	50
4.2	ELM for Zinc Extraction		
	4.2.1	Effect of extraction time and speed	55
	4.2.2	Effect of carrier concentration	58
	4.2.3	Effect of surfactant concentration	60
	4.2.4	Effect of water-oil (W/O) ratio	63