UNIVERSITY TEKNOLOGI MARA

STRUCTURAL AND PHOTOLUMINESCENCE PROPERTIES OF Cr-DOPED AND Cr/Zn CO-DOPED Al₂O₃ SYNTHESIZED USING SOLUTION COMBUSTION METHOD

NUR AZLIANA FTRI BINTI ABD HALIM

Thesis submitted in fulfilment of the requirements for degree of Master of Science (Physics)

Faculty of Applied Science

August 2022

ABSTRACT

The Cr-doped Al₂O₃ is the foundation of advancement of modern laser technology. It is potentially can be applied as phosphor materials and photoluminescence (PL) bio-probe in bioimaging applications. For these applications, high PL intensity sample is required. In this work, samples were prepared using solution combustion (SC) method and their properties in terms of structural and PL properties were investigated. Characterization techniques including X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy, PL and Ultraviolet-visible (UV-Vis) spectroscopy were employed. Fuel is one of main component in solution combustion method for obtaining high PL intensity sample. Different fuels usage including urea, sorbitol, and glycine were used and analysed. From the result obtained, the samples synthesized using urea showed the formation of highly crystalline single phase α -Al₂O₃ phase and produced highest PL intensity. While, the sample synthesized using sorbitol and glycine have lower PL intensity due to the existence of additional Al_2O_3 phase crystalline structure which are γ -Al₂O₃ cubic phase and θ -Al₂O₃ monoclinic phase. It can be concluded that, urea is the most suitable fuel which produced sample with high PL intensity. Next, the samples with different Cr^{3+} concentrations (0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 wt.%) were prepared in order to find the optimum Cr^{3+} concentration. The obtained results show that the optimum Cr^{3+} concentration is 0.8 wt.%. Moreover, the sample with optimum Cr concentration was found to have the smallest energy band gap (4.20 eV). This finding suggests, for this sample the electrons are easier to jump to the conduction band, which makes the photon releasing process more efficient. Rietveld refinement revealed the increases in lattice parameter due to the replacement of aluminium atoms with chromium atom which has larger ionic radius. The cell volume also found to increase at higher Cr concentration. Next, zinc was added in order to further increase the PL of the sample. After zinc addition, the energy band gap was reduced from 4.31 eV to 4.23 eV. This reduction leads to the PL intensity enhancement by 34%. Furthermore, the enhancement is believed due to the modification in the crystal field environment by Zn^{2+} ions. The modification will decrease the crystal symmetry around the Cr³⁺ ions which is beneficial for enhancing up-conversion luminescence. Thus, it is proved that the PL intensity of Cr-doped Al_2O_3 can be enhanced by the addition of zinc elements.

ACKNOWLEDGEMENT

First and foremost, I am very grateful to the almighty ALLAH S.W.T for granting me good health and giving me the opportunity to complete my research and thesis successfully.

Herein, I would like to express my sincere appreciation to my supervisor Dr. Wan Aizuddin bin W Razali for his guidance, support, suggestions, useful critiques and always patience for these two years of my study. Special thanks to my co-supervisor, Dr. Muhamad Kamil bin Yaacob who always provide a helpful advice, allocating time to guide me, sharing his knowledge and making it possible for me to complete my research. I am grateful to Universiti Teknologi MARA (UiTM), Ministry of Education/Ministry of Higher Education (MOE/MOHE) for supporting me financially under Fundamental Research Grant Scheme (FRGS) throughout my studies.

Thanks to my parents, Mr. Abd Halim bin Asnan and Madam Nor Sharifah binti Yacob, without them, none of this would have been possible. Their love, patience and support were vital to my success. Not to forget to all my siblings for their motivation and encouragements.

Thanks also to my close friends, Nur Shahirah binti Zaharuddin, Hanis Mastura binti Mohzan and Muhammad Najmi bin Zubairi who always helped me during this research and give the moral support until I completed my study with successful. Last but not least, I would like to thank to those who have contributed and assist through behind the scenes for the successful completion of this work.

Nur Azliana Fitri binti Abd Halim

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGMENT	v
TABLE OF CONTENTS	viii
LIST OF TABLES	ix
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	XV

CHAPTER ONE INTRODUCTION

1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Objectives of Study	4
1.4 Significance of Study	5
1.5 Scope and Limitation of Study	5
1.6 Thesis Outline	6

CHAPTER TWO LITERATURE REVIEW

2.1 Ruby (Cr-doped Al ₂ O ₃)	7
2.1.1 Composition and Structure	7
2.1.2 Structural Studies for Cr-doped Al ₂ O ₃	9
2.1.3 Photoluminescence Studies for Cr-doped Al ₂ O ₃	11

2.2 Synthesis Method of Cr-doped Al ₂ O ₃	13
2.2.1 Solution Combustion Method	16
2.3 Zinc Co-doping for Photoluminescence Enhancement	18

CHAPTER THREE METHODOLOGY

3.1 Introduction	20
3.2 Materials	20
3.3 Sample Preparation	25
3.4 Sample Characterization	22
3.4.1 X-Ray Diffraction (XRD)	22
3.4.2 Scanning Electron Microscope (SEM)	23
3.4.3 Energy Dispersive X-Ray spectrometer (EDX)	25
3.4.4 Ultra Violet-Visible (UV-Vis) Spectroscopy	26
3.4.5 Photoluminescence (PL) Spectroscopy	27

CHAPTER FOUR RESULTS AND DISCUSSION

4.1 Introduction	29
4.2 Part I: Cr-doped Al ₂ O ₃ Powder Synthesized Using Different Fuels	29
4.2.1 Structural Properties	29
4.2.2 Photoluminescence Properties	35
4.3 Part II: Cr-doped Al ₂ O ₃ Powder at Different Cr ³⁺ Concentration	40
4.3.1 Structural Properties	40
4.3.2 Photoluminescence Properties	50
4.4 Part III: Cr-doped Al_2O_3 Powder with Zn Co-Doping at Optimum Cr^{3+}	
Concentration	59
4.4.1 Structural Properties	59
4.4.2 Photoluminescence Properties	65