UNIVERSITI TEKNOLOGI MARA

INDIRECT SCHEME FOR ESTIMATING ROTATIONAL FREQUENCY RESPONSE FUNCTION AND IMPROVING FREQUENCY-BASED SUBSTRUCTURE COUPLING

WAN IMAAN IZHAN BIN WAN ISKANDAR MIRZA

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Mechanical Engineering)

College of Engineering

July 2022

ABSTRACT

The frequency-based substructuring (FBS) method, which is widely used in the vibration and acoustics industries, offers the attractive advantage of combining both theoretical and experimental frequency response functions (FRFs) to derive the dynamics of assembled structures. One of the biggest challenges in the FBS method is rotational frequency response functions (FRFs), which account for 75% of the coupling matrix. Rotational FRFs are essential for the success of the FBS method, but they are very difficult to determine experimentally. In this study, a validated scheme for estimating the rotational FRFs for the FBS method is proposed. The scheme was developed based on the integration of model updating, mode expansion and the FRF synthesis method into the FBS method for analysis of an assembled structure. An approximated and simplified (ASFE) model was developed and used in the scheme to overcome the difficulties encountered in constructing and analysing a FE model of a complex assembled structure. The geometry of the ASFE model was approximated and simplified, but still capable of representing the EMA mode shapes for the purpose of mode expansion. The applicability and capability of the proposed scheme was demonstrated in a case study to determine the FRFs of an assembly consisting of a beam substructure (FE model) and an irregular plate substructure (ASFE model). The ASFE model was expanded using the updated ASFE model to obtain the unmeasured rotational FRFs. The accuracy of the rotational FRFs of the expanded ASFE model was evaluated using experimental rotational FRFs measured with Kistler's direct piezoelectric rotational accelerometer. The rotational FRFs of the expanded ASFE model agreed well with the EMA FRFs. The frequency-based substructuring method was successfully applied by coupling the FRFs of the FE model of the beam and the expanded ASFE model of the irregular plate with the proposed scheme. The comparison of the results between the coupled FRFs of the expanded ASFE model and the EMA showed that the proposed scheme was highly capable of accurately predicting the dynamic behaviour of the assembled structure. Moreover, the coupled FRF calculated with the proposed scheme was compared with the widely used EMPC approach for FBS. It was found that the proposed scheme resulted in a less noisy and more accurate pattern of FRF compared to its EMA counterparts. This indicates that the proposed scheme has the potential to significantly reduce the heavy dependence of the FBS method on the experimental rotational FRF data, which is very difficult to determine experimentally. In addition, the proposed scheme can help speed up decisions in product manufacturing or to improve the performance of products, which will have a positive impact on the industry.

ACKNOWLEDGEMENTS

First of all, I would like to thank God for giving me the opportunity to start my PhD and to successfully complete this long and challenging journey. My deepest gratitude goes to my PhD supervisor, Dr. Muhamad Norhisham Abdul Rani, who has guided me throughout my PhD journey. He has been my great mentor since I was 22 years old and has inspired me to advance my knowledge, skills and career in the field of structural dynamics. He not only shared his knowledge with me, but also his life experiences. I would like to thank my co-supervisor, Assoc. Prof. Ir. Dr. Mohd Azmi Yunus, a.k.a. Dr John, for his advice, guidance, and time during my studies. I usually spend great time with Dr Norhisham and Dr John and we discuss many things over coffee every morning, especially my research and activities in Structural Dynamics Analysis & Validation (SDAV). We also travelled around several countries to acquire and deepen our knowledge of structural dynamics. The most important thing I will never forget is that when I had a serious motorbike accident in October 2018, my supervisors immediately came to me, took care of me and brought me to a medical centre.

My thanks to the members of Structural Dynamic Analysis & Validation (SDAV) consisting of Mohamad Fauzi Md Said, Ahmad Burhani, Mohd Syazwan, Muhamad Azam Shah, Abdul Rahim, Ir Rohaizat and Crystal Peter who supported and guided me during the research work. My special thanks to my wife, Siti Nadiah Ahmad, who supported and believed in me during my PhD and took care of our children while I was busy writing my thesis.

Finally, this thesis is dedicated to the loving memory of my dear mother and father, Nor Haslina Binti Hassan and Wan Iskandar Mirza Wan Hassan, who brought me up with vision and determination. This work is dedicated to both of you. I love you so much.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS				
AUT	HOR'S DECLARATION	iii		
ABS	ГКАСТ	iv		
ACK	NOWLEDGEMENTS	v		
TAB	LE OF CONTENTS	vi		
LIST	T OF TABLES	X		
LIST	COF FIGURES	xiii		
LIST	TOF PLATES	xviii		
LIST	T OF SYMBOLS	xix		
LIST	COF ABBREVIATIONS	xxi		
LIST	TOF NOMENCLATURE	xxii		
СНА	PTER ONE INTRODUCTION	1		
1.1	Motivation of the Study	1		
1.2	Background of the Study	2		
1.3	Problem Statement of the Study	5		
1.4	Goal and Objectives of the Study	6		
1.5	Scope and Limitation of the Study	7		
1.6	Significance of the Study	8		
1.7	Thesis Outline	9		
СНА	PTER TWO LITERATURE REVIEW	11		
2.1	Introduction			
2.2	Experimental modal analysis (EMA)			
2.3	Finite Element Modelling and Updating			
	2.3.1 Model Updating	16		
	2.3.2 Efficiency Disadvantages of Finite Element Modelling	19		
2.4	Dynamic Substructuring Methods			
2.5	Frequency Based Substructuring Method			

2.6	Experimental Issues Related to Frequency Based Substructuring			
2.7	Approaches For Solving the Rotational DOFs Issues			
2.8	Mode Expansion Methods			
2.9	Chapter Summary		32	
CHA	PTER 7	THREE RESEARCH METHODOLOGY	35	
3.1	Introd	uction	35	
3.2	Research Methodology			
	3.2.1	Development of the Proposed Scheme	37	
	3.2.2	Development of Test Structure	38	
	3.2.3	Experimental Modal Analysis (EMA)	39	
	3.2.4	Development of the ASFE Model	39	
	3.2.5	Validation and Model Updating of the ASFE Model	40	
	3.2.6	Mode Expansion of Updated ASFE Model	41	
	3.2.7	FRF Synthesis of the Expanded ASFE Model	42	
	3.2.8	Frequency Based Substructuring	42	
	3.2.9	Evaluation of the Proposed Scheme	43	
3.3	Theoretical Background of the Proposed Scheme		43	
	3.3.1	Finite Element Modal Analysis	43	
	3.3.2	Experimental Modal Analysis	45	
	3.3.3	Modal and FRF Validation	48	
	3.3.4	Model Updating Method	49	
	3.3.5	Mode Expansion Method	50	
	3.3.6	FRF Synthesis Method	52	
	3.3.7	FRF Based Substructuring Method	53	
3.4	Descri	iption of the Test Structure	58	
3.5	Chapt	er Summary	60	
CHA	PTER I	FOUR EXPERIMENTAL MODAL ANALYSIS	61	
4.1	Introduction		61	
	4.1.1	The Overview of EMA	62	
4.2	EMA	Preparation and Equipment	63	
	4.2.1	Force and vibration transducer.	63	

vii