UNIVERSITI TEKNOLOGI MARA

THERMAL PROPERTIES AND DIELECTRIC RESPONSE OF POLY(ETHYLENE OXIDE) / POLY(METHYL ACRYLATE) BLENDS WITH ADDITION OF SALT AND NANOFILLER

SUHAILA IDAYU BINTI ABDUL HALIM

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Science)

Faculty of Applied Sciences

June 2022

ABSTRACT

A series of systematic study comprises elucidation on phase behaviour, dielectric relaxation, and other important properties on semi-crystalline/amorphous poly(ethylene oxide)/poly(methyl acrylate) PEO/PMA blends after addition of lithium perchlorate (LiClO₄) and titanium dioxide (TiO₂) were done for different compositions. The manipulated variables here are the mass fraction of PEO, Li-salt and TiO₂-nanofiller. The study was allocated into a series of systems for systematic understanding on the properties of each system *i.e.*, polymer-salt, PEO/PMA polymer-blend, PEO/PMA polymer-blend solid polymer electrolyte and PEO/PMA polymer-blend composite polymer electrolyte. The samples were prepared through solution casting technique to fabricate the solid solutions with appreciable energy density and leakage-free electrolytes for the application of energy storage. Each property of each system was investigated from the phenomenological point of view complemented with theoretical analyses for elucidation of the overall properties. The first section of the study elucidates on the thermal and dielectric properties of several polymer-salt systems examined by differential scanning calorimetry (DSC) and electrochemical impedance spectroscopy (EIS), respectively. Findings show the variation in glass transition temperature (T_g) with increasing salt content. Dielectric responses of PEO and PMA with salt at 25 °C reveal that PEO is electrically conductive even at low mass fraction of salt unlike PMA, where it became slightly conductive only with high salt content. PEO and PMA were opted for the next section of the study due to the desirable properties for polymer blending. In the second section, the blend stability, miscibility and intermolecular interaction of PEO/PMA blends were explored. PEO has a better thermal stability than PMA based on the thermogravimetric analysis (TGA), which is also true for blends with PEO in excess. DSC analysis suggests the existence of a single and composition-dependent T_{g} for the blends with 10 wt.% interval difference indicates the miscibility of the PEO/PMA blends. Fourier-transform infrared (FTIR) spectroscopy does not suggest the intermolecular interaction between PEO and PMA in the blends. This miscibility of PEO and PMA may be due to the entropic effect instead of enthalpic effect since PEO and PMA only display weak van der Waals interactions in blends. Next, the PEO/PMA blends with addition of LiClO4 were studied. The miscibility of the PEO/PMA blends after addition of salt relied on the content of PEO is suggested. The blends are only miscible when PEO is in excess (> ~ 60 wt.%) by displaying a single and compositional-dependant T_g with salt. Results of $T_{\rm g}$ using DSC, molecular interaction from FTIR and dielectric response from EIS suggest that the charged entities of LiClO4 coordinate with ether oxygen of PEO instead of carbonyl oxygen of PMA for blends with PEO in excess (e.g., Tg of PEO₈₀ increases from -31° C to -26° C for $W_{\rm s} = 0.0196$ to 0.091). Hence, the percolation pathway for these electrolytes may be lying in the amorphous region of the PEO phase. The effect of addition of TiO_2 on the phase behaviour, conductivity and intermolecular interaction of PEO/PMA blends were elucidated in the last section of the study. Findings suggest that salt preferably dissolves in PEO phase as compared to PMA phase while TiO₂ does not coordinate well either to PEO or PMA phase in the presence of salt since the T_{gs} of PEO and PMA after addition of TiO₂ show insignificant difference as compared to the $T_{\rm g}$ of the pure polymers. These outcomes elucidates the properties of the polymers may be altered based on the interactions between the constituents in the mixture.

ACKNOWLEDGEMENT

First and foremost, I thank Allah the Almighty for granting me the opportunity to embark on and the courage and strength to pursue my ambition for PhD. Indeed, it is a long and challenging but extremely valuable journey.

Secondly, my sincerest gratitude and thanks to my supervisor, Prof. Ts. ChM. Dr. Chan Chin Han, for all her great contribution, tireless guidance and continuous support throughout the journey. Sincere gratitude and thanks also to the co-supervisors, Prof. Dr. Tan Winie and Prof. Dr. Joerg Kressler (from Martin-Luther University of Halle-Wittenberg) for their valuable contributions and guidance.

My appreciation also goes to the Faculty of Applied Sciences, UiTM and all its everhelpful members for the facilities and the assistances during the course of my thesis research, sampling and analyses. Special thanks to my colleagues and friends for helping me with this project.

Finally, I dedicate this thesis to my parents for the vision and determination in educating me the purpose of life. May the Almighty continue to shower both of you with His blessings.

TABLE OF CONTENTS

CON	ii		
AUT	iii		
ABS	TRACT	iv	
ACK	KNOWLEDGEMENT	V	
TAB	vi		
LIST	Г OF TABLES	X	
LIST	Γ OF FIGURES	xii	
CHA	APTER ONE INTRODUCTION	1	
1.1	Research Background	1	
1.2	Problem Statement	2	
1.3	Objectives	4	
1.4	Scope and Limitation of Study	5	
1.5	Significance of Study	6	
CHA	APTER TWO LITERATURE REVIEW	8	
2.1	Polymer Blends	8	
2.2	Poly(ethylene oxide) (PEO)	10	
2.3	Poly(methyl acrylate) (PMA)	11	
2.4	Phenomenological Background	14	
	2.4.1 Glass Transition Temperature (T_g)	14	
	2.4.2 Electrolytes and Batteries	17	
	2.4.3 Dielectric Response of Polymer Electrolytes	24	
2.5	Solid Polymer Electrolytes (SPEs)	28	
2.6	Composite Polymer Electrolytes (CPEs)	31	
CHA	APTER THREE RESEARCH METHODOLOGY	35	
3.1	Introduction		

3.2	Mater	Iaterials		
3.3	Sample Preparation			
	3.3.1	Polymer-salt system	38	
	3.3.2	Polymer-blend systems and its solid polymer electrolyte systems	39	
	3.3.3	Polymer-blend composite polymer electrolyte systems	40	
3.4	Chara	Characterizations		
	3.4.1	Thermal Gravimetry Analysis (TGA)	41	
	3.4.2	Differential Scanning Calorimetry (DSC)	42	
	3.4.3	Optical Microscopy (OM)	43	
	3.4.4	Fourier-transform Infrared Spectroscopy (FTIR)	44	
	3.4.5	Electrochemical Impedance Spectroscopy (IS)	45	
СН	APTER	FOUR RESULTS AND DISCUSSION	46	
4.1	Glass	Transition of Polymer-salt Systems	46	
	4.1.1	Introduction	46	
	4.1.2	Results and Discussion	46	
	4.1.3	Conclusion of Glass Transition of Polymer-salt Systems	51	
4.2	Bulk l	Resistance (<i>R</i> _b) of Polymer-salt Systems	51	
	4.2.1	Introduction	51	
	4.2.2	Results and Discussion	53	
	4.2.3	Conclusion of R_b of Polymer-salt Systems	56	
4.3	Dielectric Response of Polymer-salt Systems			
	4.3.1	Introduction	57	
	4.3.2	Impedance Spectroscopy	57	
	4.3.3	Conclusion of Dielectric Response of Polymer-salt Systems	68	
4.4	PEO/I	PMA Blends	68	
	4.4.1	Introduction	68	
	4.4.2	Thermal stability of the blends	71	
	4.4.3	Temperature-dependence of the rate of thermal degradation	72	
	4.4.4	Miscibility	73	
	4.4.5	Crystallinity	74	
	4.4.6	Melting behavior	76	
	4.4.7	FTIR Analysis	77	