EXHAUST THROTTLING AND ITS EFFECT ON RADICAL COMBUSTION ACHIEVEMENT

This thesis is presented in partial fulfillment for the award of the Bachelor in Mechanical Engineering (Hons.) of MARA UNIVERSITY OF TECHNOLOGY

MUHAMAD NOOR B. HARUN SAIFULLIZAN B. MOHD SHUKOR RAFIDAH BT. ABD RAUB Faculty of Mechanical Engineering MARA University of Technology 40450 Shah Alam

Acknowledgement

In the name of Allah (S.W.T) the most gracious and merciful Creator. We Praise Him and seek His blessing on His Noble Prophet S.A.W.

Thank to Allah (SWT) for giving us the opportunity to complete this final project paper with a successful and new discovery.

Firstly, we would to express our gratitude to our dedicated project advisor, Dr, Saqaff Al Kaf for the supervision and support in completing this project. Our gratitude also goes to Dr. Ahmad Suhaimi for his constructive comment and guidance. We also grateful to all members of the Mechanical Engineering laboratory (IC Engine lab) and CADEM center of their support and technical expertise. Not Forgetting a special thank to Bureau of Research and Consultancy (BRC) for the financial support.

Finally, we would like to express our deepest gratitude to our parent, family and friends for the unlimited encouragement. They have been a constant source of strength and inspiration to us.

Table of Content

List of figure and table Abstract CHAPTER ONE **INTRODUCTION** 1.0 Historical Background

1.1	Theoretical Cycle Of Two-Stroke Engine	2
1.2	Two-Stroke Engine Construction	5
1.2.1	The Main Parts	5
1.2.2	Actual Cycle For Two-Stroke Engine	11
1.2.3	Two-Stroke Engine Timing Diagram	13
1.3	Two-Stroke Engine Performance	13
1.3.1	Indicated Power, Brake Power And Engine Torque	14
1.3.2	Specific Fuel Consumption	15
1.3.3	Exhaust Emission	18
1.4	A Brief of Radical Effect	19
1.5	Scope Of Present Work	20

CHAPTER TWO

SCAVENGING PROCESS IN TWO-STROKE ENGINE

2.0	Introduction	22
2.1	Types of Two-Stroke Engines	22
2.1.1	Crankcase Scavenging Engine	23
2.1.2	Separately Scavenged Engine	24
2.1.3	Opposed Piston or End To End Engine	26
2.2	Classification Based on Scavenging Process	26
2.3	Effects Of Scavenging on Engine Performance	28

Page

1

2.3.1	Delivery Ratio	29
2.3.2	Trapping Efficiency	30
2.3.3	Relative Cylinder Charge	30
2.3.4	Scavenging Efficiency	32
2.4	Problem Associated With Scavenging Process	33

CHAPTER THREE

RADICAL COMBUSTION PROCESS

3.0	Introduction	35
3.1	Combustion Process in The Two-Stroke Petrol Engines	35
3.1.1	Spark Ignition Combustion Process	36
3.2	Theories of Combustion in Two- Stroke Engines	38
3.2.1	Basis of Combustion Reaction	38
3.2.2	Mechanism And Rate Of Combustion Reaction	41
3.3	Actuated Radical Combustion Theory	47
3.3.1	Auto Ignition	48
3.3.2	Engine Knock	49
3.3.3	Run-on	54
3.3.4	Chemical Kinetic	55

CHAPTER FOUR

MODIFICATON AND ENGINE TESTING

÷,

4.0	Introduction	60
4.1	Design Stages	61
4.1.1	Plate Exhaust Port	61
4.1.2	Design And Fabrication	62
4.1.3	Ignition System	63
4.1.4	Process of Manufacture	68
4.2	Equipment Description	69
4.2.1	Instrumentation Unit (TD 114)	70
4.2.2	Measurement of Torque, Hydraulic Dynamometer (TD 115	5) 71
4.2.3	Water Supply	71

v

Abstract

In this study a two-stroke engine of 100 cc was used to carry out an experimental study towards achieving the radical combustion. It is to be noted that this work is mainly to propose a new strategy for control the exhaust gases and find a better method for this throttling controller, overcoming the previous study problems.

However other modification for the test bed was carried to enhance the experimental work accuracy. In addition to put the engine and the other parts of the rig in the proper condition, the Contact Point Ignition System (CPI) in the engine was replaced by a Capacitance Discharge Ignition System (CDI), due several advantages of the CDI over the traditional CPI. Changing of the ignition system deviate the work towards the reversibility of two-stroke engine. An illustration explain was introduced about the occurring of the reversibility for the two-stroke engine.

Throttling of the exhaust gases has been proposed outside the cylinder block to avoid the presence of the high temperature and difficulty of the movement of the sliding plate recorded in the previous work. Three different configuration restriction plates were prepared to act as a controller of the amount of the exhaust gases to be trapped.

Results indicate the criticality of the radical combustion where it is to be noted that radical could not be achieved by such method of control. The main reason, which is found, related to the condition of the radical is the amount of exhaust gas to be trapped and the time of trapping these gasses. As it is pointed out that making the control away from the exhaust port effect clearly the scope of the heated charges which are believed as the carrier of the well active radical, due its high concentration of heated unburnt hydrocarbon (UBH).