

SLOW CRACK GROWTH OF POLYMER MIXED CONCRETE UNDER CONSTANT LOAD

IKHAIRUL HAMIN BIN MAT GHANI 20001193988

A thesis submitted in partial fulfillment of the requirement for the award of Bachelor Engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi MARA (UiTM)

OCTOBER 2004

ACKNOWLEDGEMENT

In the name of Allah S.W.T the most Gracious who has given us this, ability, and strength to complete this project and report. All perfect prices go to Allah S.W.T, Lord of the universe.

Firstly our appreciation to our advisor, Assoc. Prof Yakub Md. Taib, who made valuable suggestions at the early stages of our projects till this project were accomplish his constant courage, invaluable guidance, patience, understanding and also for his constructive comments in improving our fixture design moreover, in conducting our experiment.

We are also indebted to En. Ziyadi our Dynamic Laboratory Technician and special thanks to En. Adam and En. Khuzairy, Workshop, and Welding Laboratory Technician for their guidance and helps for the usage of machine and welding equipments in the workshop as their assistance made a big contribution to our projects.

Also we would like to express our gratitude to all final year students of Bachelors of Mechanical Engineering of Mara University of Technology especially our teammates, Mahathir, Helmi, Sharfizal and Siti Fatimah for their supports and most helpful in pointing out some ideas in this project.

Finally, to our beloved parents and anonymous person that has been helping in this project, thanks for everything. Without their understanding and encouragement, it would be impossible for us to complete this thesis. We believe that this project will give us benefits in the future. Thank you.

ABSTRACT

This thesis explains how cracking are influenced by dimensions (size effect) and material properties such as tensile strength; fracture toughness. This is done with the help of models of fracture mechanics. Problems that affect those models are discovered. They are, slow (but stable) crack growth before failure and complex state of stress at crack tip.

From elastic plastic fracture mechanics EPFM, the three point bending test was considered in this thesis. Moreover, the fracture mechanics parameters obtained from both EPFM stress approach was considered for the analysis and discussion.

Nevertheless, all this can be achieve by designing, fabricates a test fixture for slow crack growth under constant load .From that we can study the behavior of polymer mixed concrete under constant stress, and relates crack growth rates with fracture parameters.

TABLE OF CONTENTS

	CON	TENTS	PAGE
	ACK	NOWLEDGEMENT	i
	ABSTRACT		iv
	NOMENCLATURE TABLE OF CONTENTS		
	LIST OF TABLES		X
	LIST	OF FIGURES	xi
CHAPTER 1	ABOUT THE PROJECT		
	1.0	Introduction	1
	1.1	Objective	2
	1.2	Significance of Project	2
	1.3	Scope of Study	3
	1.4	Methodology	4
		1.4.1 Literature Review and Background Study	4
		1.4.2 Design Process	4
		1.4.3 In House fabricating Works	4
		1.4.4 Testing and Commissioning Test Fixture	5
		1.4.5 Experimental Set-up	5

CHAPTER 2 BACKGROUND STUDY

CHAPTER 3

2.0	Historical Overview	6
2.1	Linear Elastic Fracture Mechanics	7
2.2	Elastic Plastic Fracture Mechanics	8
2.3	Nonlinear Quasi Brittle Fracture Mechanics	9
2.4	Polymer Mixed Concrete	10
	2.3.1 Introduction	10
	2.3.2 Nature and General Properties	11
2.5	Preloading Accelerate Slow Crack Growth Testing	12
2.6	Stress Strain Curve	14
2.7	Review of Behavior quasi-brittle materials	16
	2.7.1 Creep	16
	2.7.2 Primary Creep	17
	2.7.3 Tertiary Creep	18
	2.7.4 Steady State Creep	19
2.8	Mechanism of Diffusion creep	20
FRAC	CTURE TOUGHNESS	
3.0	Background	21
3.1	Modes of Failure	23
3.2	Difference between Fracture Toughness	26
3.3	Fracture Toughness Parameter	28
3.4	Stress Intensity Factor	29
	3.4.1 Stress Intensity Factor in Practice	30
	3.4.2 Stress Intensity Factor & Fracture Toughness	31
3.4	Crack Tip Opening Displacement	31
	3.4.1 CTOD in Specimen	32
3.5	J-Integral	34