

ł

MEASURING SPEED AND DIRECTION USING FIBER OPTIC TECHNOLOGY

ZA'AKEMAL BIN ABD RAHMAN 2001194746

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) Mechanical

FACULTY OF MECHANICAL ENGINEERING UNIVERSITY TECHNOLOGY MARA

APRIL 2005

.

ACKNOWLEDGEMENT

First of all, I would like to express my appreciation to my advisor, Puan Nor Hayati Saad for her guide, patience and encourage in the duration of the thesis preparation. I would also like to thank Puan Zuriati Janin, Azham and technicians of FKM's workshop for their help and cooperation. Last but not least, I would also like to express my appreciation to individuals, group and all of my friends. Lastly to my lovely family that give support and encourage in order to finish my study.

ABSTRACT

This report discusses about the application of anemometer in practical. Some theories regarding the propeller anemometer are presented. One of the important parts of theories is regarding the dynamics theory of the propeller anemometer. The goal of this part is to achieve an accurate mechanical function of the speed and direction measurement of the wind. The propeller of the anemometer should be able to response the wind velocity and give the speed value, whilst, the anemometer should also detect the direction of the wind precisely. The full design of anemometer is very important to ensure movement of propeller anemometer function accurately with balancing and smooth moving.

This paper also presents an approach in signal conditioning circuit design for velocity and direction measurement. The goal is to achieve an accurate measurement of the velocity using rotational disc and photo detector as a sensor. The goal of this part is to achieve an accurate measurement of the direction using a photodiode. For speed, a signal conditional circuitry is used to transform the input signal into a suitable output. Light from the light source is captured by a photodetector. When disc rotated the captured signals are then transformed to the desired output that is in term of frequency, voltage and speed in rotational per second. For direction, signal conditioning circuitry is designed for direction used to transform the input signal from a sensor into a suitable output in term of degree (°). The signal of light is through the fiber optic and the reflection of light from depth of disc the through again fiber optic, captured by a photodiode when a disc rotated. Each hole of the disc has a unique value of depth. The signals captured at every depth and then transformed to the desired output. The measurement of speed and direction depend on the signal conditioning circuit.

TABLE OF CONTENTS

CONTENTS	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix

CHAPTER 1 INTRODUCTION

1.1 Introduction	1
1.2 Objectives	2
1.3 Scope of Project	2

CHAPTER 2 LITERATURE REVIEW

2.1 Propeller Anemometer	3
2.2 The Wind Vane	6
2.2.1 Wind Vane Dynamics	7

CHAPTER 3 INSTRUMENTATION OF MECHANICAL SYSTEM

3.1 Concept of Design	10
3.1.1 Overall Design	10
3.1.2 Design Basis	11
3.1.2.1 Anemometer	11
3.1.2.2 Propeller	12
3.1.2.3 Stand Anemometer	13
3.1.2.4 Wind Tunnel	14
3.2 Detail Design	15
3.2.1 Detailed Drawing	15
3.2.2 Materials	20
3.2.2.1 Mild Steel and Aluminum Rod	20
3.2.2.2 MoS ₂ Cast Nylon 6	21
3.2.2.3 Standard Steel	22
3.2.2.4 Copper	22
3.2.2.5 Plastic and Rubber	23
3.2.3 Fabrication	24

CHAPTER 4 INSTRUMENTATION OF ELECTRICAL SYSTEM

......

4.1 The Theory of Light and Optical Fiber	26
4.1.1 Advantages and Disadvantages of Using	28
Optical Fiber	
4.1.1.1 Advantages of Using Optical Fiber	28
4.1.1.2 Disadvantages of Optical Fiber	29
4.1.1.3 Types of Optical Fiber	30
4.1.1.4 Light Source	32
4.1.1.5 Light Detector	34
4.2 Circuit Design of a Velocity measurement Instrument	36
4.2.1 Block Diagram of The Measurement Instrument	37
4.2.1.1 Driver circuitry	39
4.2.1.2 Optical Fiber Cable	39