KENAF CORE PARTICLEBOARD BASED ON PHYSICAL, MECHANICAL AND ACOUSTIC PROPERTIES

NUR 'IZZATI BINTI ISMAIL

BACHELOR OF SCIENCE (Hons.)
FURNITURE TECHNOLOGY
FACULTY OF APPLIED SCIENCE
UNIVERSITY TEKNOLOGI MARA

JULY 2014

ACKNOWLEDGEMENT

First of all, the author would like to say Alhamdulillah and very grateful to Allah for giving her this opportunity, time and many ways to finish her final year thesis without much problem. Without Allah guide, it is impossible for the author to finish this study.

Then, the author would like to say thank you to her parents for giving her support without giving up and always pray for her. Not forgetting to the author's important lecturer and first supervisor Associate Professor Said bin Ahmad for giving so many guidances and keep continuing correcting her mistakes. It is a bless to receive help and advice from him. Furthermore, to the author's second supervisor Mr. Hashim bin W. Samsi from Forest Research Institute of Malaysia (FRIM) for giving the author necessity instruction regarding particleboard and Kenaf material. All the helps and guides will not be forgotten.

Moreover, the author would like to express her sign of appreciation to the project coordinator, Associate Professor Dr. Wan Mohd Nazri bin Wan Abdul Rahman, Mr. Amran bin Shafie as the Head of Programme for providing her with further materials and equipment needed for this study. Not forget to mention, their effort to maintaining these equipment's still functional for the author's as one of the student to use. Millions of gratitude the author would like to express to her close friends Suhaini Suria, Norazwanis Aida Fauzi, Nur Syahirah Jaus, Siti Anisah Arshad, Noor Azreen Seni Nor Shuhada Abdullah

TABLE OF CONTENTS

		Page
APP	PROVAL SHEET	i
DED	DICATION	ii
	NDIDATE'S DECLARATION	iii
PUB	SLICATION OF THE PROJECT UNDERTAKING	iv
PER	MISSION FOR REFERENCES AND PHOTOCOPYING	V
ACK	KNOWLEDGEMENT	vi
TAB	BLE OF CONTENTS	vii
LIST	Γ OF TABLES	ix
LIST	Γ OF FIGURES	X
LIST	Γ OF PLATES	xii
LIST	Γ OF ABBREVIATIONS	xiii
LIST	Γ OF APPENDICES	xiv
ABS	TRACT	XV
ABS	TRAK	xvi
CHA	APTER 1 INTRODUCTION	
1.1	Background	1
1.2		3
1.3		4
1.5	Objectives	5
CHA	APTER 2 LITERATURE REVIEW	
2.1	Kenaf	
	2.1.1 General Characteristics	6
	2.1.2 Importance of Kenaf	7
	2.1.3 Kenaf in Malaysia	7
2.2	Urea Formaldehyde	
	2.2.1 Background and Usage	8
2.3	Particleboard	
	2.3.1 Definition	9
	2.3.2 Properties and Factors	10
	2.3.1.2 Advantages	10
2.4	Noise Pollution	
	2.4.1 Definition	11
	2.4.2 Harmful Effects of Noise Pollution	12

CHA	APTER 3 MATERIALS AND METHOD	
3.1	Experimental Design	14
3.2	Materials Preparation	14
3.3	Kenaf Core Particleboard Manufacturing	16
	3.3.1 Screening and drying	16
	3.3.2 Mixing of particles with resin	18
	3.3.3 Mat Forming	19
	3.3.4 Hot and Cold Pressed	20
	3.3.5 Trimming, cutting and conditioning	22
3.4	Kenaf Samples Cutting for Mechanical and Physical Test	25
	3.4.1 Determination of Moisture Content and Density	26
3.5	Method of Testing	28
	3.5.1 Bending Test (MOE and MOR)	29
	3.5.2 Internal Bonding	30
	3.5.3 Thickness Swelling and Water Absorption	31
3.6	Kenaf Sample Manufacturing for Acoustic Test	32
3.7	Method of Analysis	33
3.8	Mechanical, physical and acoustic samples replicate	34
CHA 4.1 4.2	APTER 4 RESULTS AND DISCUSSION Introduction Mechanical Properties	35
	4.2.1 Bending Test	
	4.2.1.1 Modulus of Rupture	38
	4.2.1.2 Modulus of Elasticity	41
4.2	4.2.2 Internal Bonding	44
4.3	Physical Properties	49
	4.3.1 Thickness Swelling	54 54
4.4	4.3.2 Water Absorption	34
4.4	Acoustic Properties 4.4.1 Effect of Resin Content	57
	4.4.2 Effect of Density	60
	4.4.2 Effect of Density	OC.
СНА	APTER 5 CONCLUSION AND RECOMMENDATIONS	61
REF	ERENCES	63
APP	ENDICES	68
CUR	RICIII IIM VITAE	78

ABSTRACT

KENAF CORE PARTICLEBOARD BASED ON PHYSICAL, MECHANICAL AND ACOUSTIC PROPERTIES

In this study, manufacturing Kenaf (*Hibiscus cannabinus L.*) core particleboards were carried out. Objective of this study was to evaluate the properties of Kenaf core particleboard. All the boards were manufactured with three different densities of 500kgm⁻³, 600kgm⁻³ and 700kgm⁻³ at two percentages of urea formaldehyde which are 8% and 10%. 30 boards were produced and cut to the dimension according to 3 types of test which includes physical, mechanical and acoustic. (Acoustic characteristic was tested to evaluate the ability of Kenaf core particleboard to absorb the noise in sound.) Based on the study, it was found that the increase of resin content and density caused an improvement in the mechanical and physical properties of the boards. However, it differs with its acoustic properties that show that the lowest density shows an increase in acoustic properties while resin content gives no significant effect towards the board's properties. This kind of board also had it weakness in damp condition. Thus, improvements towards moisture resistance properties need to be done in further research to cover the lack in this particleboard.