PROPERTIES OF THREE LAYERS HYBRID PARTICLEBOARD FROM SAWDUST AND Acacia mangium

MOHAMAD SAHZERI BIN SA'AT

Final Year Project Submitted in
Partial Fulfillment of the Requirements for the
Degree of Bachelor of Science (Hons) Furniture Technology
In the Faculty of Applied Science
Universiti Teknologi MARA

JANUARY 2012

ACKNOWLEDGEMENT

Assalammualaikum w.b.t

Praise to the almighty Allah the most gracious and merciful, for the strength He has given me to finally complete my Final Project (FUR 529).

Deepest gratitude goes to my project advisor, Mdm. Siti NoorBaini binti Sarmin for her invaluable guidance and constructive criticism in carrying out the whole project.

I would also like to thanks to Mr. Mohd Shahril Izanie Abdullah his help and guidance in the workshop. Also, thanks to all of my friends who have been really supportive me.

Last but not least, we would like to express our deepest appreciation to all of my family members, who have given me their unfailing love, prayer, support and encouragement. Thank You...

TABLE OF CONTENTS

CONTENT	PAGE
APPROVAL SHEET	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PLATES	ix
LIST OF ABBREVIATIONS	x
ABSTRACT	xi
ABSTRAK	xii
CHAPTER	
1.0 INTRODUCTION	
1.1 Hybrid Composite	1
1.2 Problem Statement	3
1.3 Objectives	5
·	
2.0 LITERATURE REVIEW	
2.1 Particleboard Composite	6
2.1.1 History and Develo	opment 7
2.1.2 Application and Ma	•
2.1.3 Raw Material Spec	
2.1.4 Hybrid Particleboa	
2.2 Wood Waste Utilization	12

		2.2.1	Types of Wood Waste	13
		2.2.2	Sawdust Utilization	14
2.3 A		Acacia	mangium	14
		2.3.1	Botanical Characteristics	15
		2.3.2	Field Characteristics	16
		2.3.3	Utilization	17
,			,	
3.0	MA	ATERIA	LS AND METHODS	
	3.1	Raw	Material Preparation	19
	3.2	Partic	eleboard Manufacturing	20
	3.3	Panel	Testing	23
		3.3.1	Moisture Content (MC) and Density	23
		3.3.2	Bending Strength	24
		3.3.3	Internal Bonding	26
		3.3.4	Thickness Swelling (TS) and Water Absorption	27
			(WA)	
4.0	RE	SULTS	AND DISCUSSIONS	
4.	.1	Moisture	e Content (MC) and Density	28
4.2 Bending Strength		29		
4	.3	Internal	Bonding (IB) Strength	31
4.	.4	Thicknes	s Swelling (TS) and Water Absorption (WA)	33
5.0	CO	NCLUS	SIONS AND RECOMMENDATIONS	36
REFERI	ENC	ES		37
APPENI	DICE	ES		41
VITA				51

ABSTRACT

PROPERTIES OF THREE LAYERS HYBRIDS PARTICLEBOARD FROM SAWDUST AND Acacia mangium

The shortage of wood supply as raw material has forced wood-based industries to find alternative raw materials. This study was undertaken to determine the properties of hybrid particleboard from sawdust and *Acacia mangium* of different density (500, 600,700 kg/m³) and resin content (8:10:8 and 12:10:12). Experimental hybrid particleboard from sawdust and *Acacia mangium* were bonded with urea formaldehyde (UF) with resin content 8:10:8 and 12:10:12 with the density 500, 600,700 kg/m³. The physical and mechanical properties were accessed. The result shows that the sawdust and *Acacia mangium* improves some properties of hybrid particleboard, such as bending strength, internal bonding strength and the density except thickness swelling and water absorption. The panels with resin content 12:10:12 showed better MOR, MOE and internal bonding compared to panels with resin content 8:10:8. The density 500, 600 and 700 kg/m³ of panels manufactured using the resin content 12:10:12 was higher compared to panels with resin content 8:10:8. Thickness swelling and water absorption rate decreased when the resin content increased.