UNIVERSITI TEKNOLOGI MARA

POTENTIAL OF COCONUT SAWDUST AS A NEW MATERIAL FOR FURNITURE PRODUCT

MUSTAZA BIN KAMALUDIN

Thesis submitted in fulfillment of the requirements

for the degree of

Bachelor of Science (Hons.) in Furniture Technology Faculty of Applied Sciences

May 2011

POTENTIAL OF COCONUT SAWDUST AS A NEW MATERIAL FOR FURNITURE PRODUCT

ABSTRACT

The increase in waste production from agricultural waste and plastic (polypropylene) has contributed to various environmental problems. It has attracted scientists of in new ideas to solve this problem. Alternatives to this problem, the wood plastic composite of coconut fiber sawdust and plastic (polypropylene) are produced. 40 mesh sizes used to obtain a uniform size of coconut fiber sawdust. The ratios of coconut fiber sawdust mixed with plastic composites are also reviewed by the coconut fiber sawdust (10% and 30%). Then, the characteristics of the water absorption rate, flexibility, and tension strength were studied. Samples of wood plastic composites from coconut fiber were compared with other two species which are Sesendok and Kelempayan. From the study, the higher filler loading, will decrease the strength of wood plastic composite.

ACKNOWLEDGEMENTS

بسمايه للرحمز الرجمي

Praise to Allah for his blessing and guidance for me that I could complete my thesis about potential of coconut sawdust as a new material for furniture product on the required time. A lot of obstacle had been through and now it is the time for the assessment by the advisor.

Deepest gratitude goes to my advisor, Miss Noorshashillawati Azura binti Mohammad. The knowledge you gave to me and all the comments are really useful to be applied in my final project.

I want to express our extreme appreciation to our final project material supplier MTS Fibromat Sdn. Bhd. at Sabak Bernam, Selangor, Mr. Ibrahim bin Salehudin as a manager of the factory that we never been forgotten for all the commitments shows by us to finish this project.

For all individual that assist in completing this assignment either directly or indirectly, I was throwing up my gratitude. Also, a lot thanks should been given to all of lecturers and staff in Department of Wood Industry Universiti Teknologi Mara especially Dr Wan Mohd Nazri bin Wan Abdul Rahman as Head Program and Coordinator Final Project (FUR 529) for their help during my two years studies in this UiTM. Deep appreciations to associate my classmate always give their hand to help me when I need it.

Lastly, I wish to my special gratitude to my beloved parents and family for their support throughout my study period.

TABLE OF CONTENTS

Page

TITLE PAGE	i
APPROVAL SHEET	ii
CANDIDATE'S DECLARATION	iii
DEDICATION	iv
ABSTRACT	v
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF PLATES	xii
LIST OF ABBEREVIATIONS	xiii

CHAPTER 1: INTRODUCTION

1.1	General	1
1.2	Problems Statement	2
1.3	Justification	2
1.4	Objectives	3

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction	4
2.2	Definition of Composite	4
2.3	Classification for Composite	5
2.4	Advantages of Composite	6

2.5	Properties of Coconut Fiber		
2.6	Thermoplastic		
2.7	Prope	rties of Composites	8
	2.7.1	Mechanical Properties	8
		2.7.1.1 Tensile Tests	8
		2.7.1.2 Bending Tests	9
		2.7.1.3 Impact Test	9
	2.7.2	Physical Properties	10
		2.7.2.1 Water Absorption	10
		2.7.2.2 Thickness Swelling	10

CHAPTER 3: MATERIALS AND METHODS

3.1	Source of Raw Materials			
3.2	Material Preparation			
3.3	Procedure of Wood Plastic Composite		13	
	3.3.1	Blending in Dispersion Mixture	14	
	3.3.2	Crusher Machine	15	
	3.3.3	Cold and Hot Press	17	
3.4	Cutting Profile			
3.5	Testing Method		21	
	3.5.1	Determination of Water Absorption (WA)	21	
	3.5.2	Determination of Thickness Swelling (TS)	21	
	3.5.3	Determination of Bending Strength (MOR & MOE)	22	
3.6	Experimental Design			