PROPERTIES OF WEATHERED OIL PALM TRUNK PLASTIC COMPOSITE IN RELATIONSHIP TO FILLER LOADING, PARTICLE SIZE, FILLER LOADING AND MAPP ADDITION

JUWAIRIAH BINTI ZAFAKALI

Final Year Project Report Submitted in
Partial Fulfilment of the Requirement for the
Degree of Bachelor of Sciences (Hons.) Bio-Composite Technology
in the Faculty of Applied Sciences
Universiti Teknologi MARA

JULAI 2013

السَّتَ لَأَفِرُ عَلَيْهُ وَأَرْجُهُمْ مِنَالِيُّهُ فَأَكُّوا مِنْ السَّافِ اللَّهُ فَا كُابُرُهُ ا

Firstly, I would like to express my grateful feeling to Allah S.W.T for His blessings until finished and submitted of my final year project titled "Properties of Weathered Oil Palm Trunk Plastic Composite in Relationship to Filler Loading, Particle Size, Filler Loading and Mapp Addition". I also would like to deeply thank Prof Dr Jamaludin Kasim, my supervisor, for facilitating every step when I have problem in my project. He is the best leader, coordinator and facilitator.

I also would like to address my gratitude and appreciation to Prof Dr Aminudin Mohamad as a lecturer project BCT 650 (Final Year Project) or project coordinator. For without his help, support and guidance throughout the course of the study, this project may not be completed.

To all my friends especially my senior Farhana and Faizah, the PhD students, whom always taught me how to run the project, and also teaching me and sharing their knowledge about research in wood plastic composite (WPC). For my friends and housemate Normala, Iffah Izzah, Hazwani, Hanani and my senior Sakinah and Farahin that always give their support all along this journey.

I am also grateful especially to Mr. Rudhaini and not to forget Mr. Shahril Ezanie Abdullah who always facilitates my requirements during this work and a very thankful for their contribution for me in finishing this project.

Thanks to all beloved!

TABLE OF CONTENTS

	PAGES
TITLE	
ACKNOLEDGEMENTS	iii
LIST OF CONTENTS	iv
LIST OF PLATES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	X
ABSTRAK	xi
a a	
CHAPTER 1 INTRODUCTION	
1.1 Background	1
1.2 Problem statement	4
1.3 Justification	4
1.4 Objective	5
CHAPTER 2 LITERATURE REVIEW	
2.1 History of OPT	6
2.1.1 General Characteristic of Oil Palm	7
2.1.2 Anatomy	8
2.2 Wood plastic composite	9
2.1.1 Properties of wood plastic composite	10
2.2.2 Uses of wood plastic composite	11
2.3 Potential of Lignocellulosic Plastic Composite	12
2.4 Polypropylene (PP)	13

2.4.1 Properties of polypropylene (PP)	14
2.5 Factor effecting wood plastic composite	15
2.5.1 Effect of particle size	15
2.5.2 Effect of filler loading	16
2.5.3 Effect of MAPP	16
CHAPTER 3 MATERIAL AND METHOD	
3.1 Flowchart of manufacturing Process of OPT Plastic Composite	17
3.2 Source of Raw Material	18
3.2.1 Debarking	18
3.2.2 Chipping	19
3.2.3 Screening	20
3.2.4 Drying	21
3.2.5 Grinding	22
3.2.6 Sieving	23
3.3 Manufacture of WPC	
3.3.1 Measuring the amount of particle and (PP)	24
3.3.2 Blending in the Dispersion Mixer	24
3.3.3 Crusher and Forming	25
3.3.4 Hot Press	26
3.3.5 Cold Press	27
3.3.6 Trimming and Cutting	28
3.3.7 Tensile board size	29
3.3.8 Bending Board Size	30
3.4 Testing Method	31
3.4.1 Bending test	32
3.4.2 Tensile Test	33
3.4.3 Water absorption test	34
3.5 Experimental Design	35
CHAPTER 4 RESULT AND DISCUSSION	
4.1 Properties of wood plastic composite	36
4.2 Statistical significance	37
4.3 Effect of filler loading on the mechanical properties of OPT	38
4.4 Effect of filler loading on the physical properties	40
4.5 Effect of particle size on mechanical properties	41
4.6 Effect of particle size on physical	43

ABSTRACT

PROPERTIES OF OIL PALM TRUNK PLASTIC COMPOSITE IN RELATIONSHIP TO PARTICLE SIZE AND MAPP ADDITION

BY

JUWAIRIAH BINTI ZAFAKALI

JULAI 2013

The research for weathered Oil Palm Trunk (OPT) has been done. The test for bending, tensile and water absorption have done for make sure the OPT is more comfortable in making wood plastic composite. The making of thermoplastic composite using OPT is followed from 10%, 30% and 50% of filler loading and 150µm, 250µm and 425µm of particle size with Maleic Anhydride-Grafted Polypropylene (MAPP) or without MAPP. The result of the bending modulus rupture (BMOR) and tensile modulus rupture (TMOR) show that the higher value. It also show that BMOR will decrease when increase the filler loading, so filler loading with the higher value is more strength because use more plastic polypropylene (PP) than filler, so it is suitable to making the wood plastic composite (WPC). For the testing of BMOR and TMOR with 3% of MAPP is more strength compared without MAPP. For the overall result physical properties effect on water absorption (WA) of filler loading with higher percentage 50%, particle size 425µm and with MAPP 3% is the best result and the higher value, so it is the suitable to make the WPC product.