UNIVERSITI TEKNOLOGI MARA

MIXING EFFECT OF FOOD WASTE AND EMPTY FRUIT BUNCHES (EFB) ON THE BIOGAS PRODUCTION FROM ANAEROBIC CO-DIGESTION

MUHAMAD ARIFF BIN AMIR HAMZAH

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

May 2022

ABSTRACT

Anaerobic digestion is a biochemical conversion process which utilizes biomass such as food waste and agricultural wastes, and converts them into biogas, a mixture of methane gas (CH_4) and carbon dioxide (CO_2) , under the absence of oxygen. This process, although possess a good potential for renewable and sustainable energy generation, is sensitive and highly dependent on the biomass feedstock used, as well as the operating conditions. Hence, in this research, anaerobic digestion experiments were conducted under different feedstock conditions and operating conditions, to determine its effect on the overall biogas productivity. The two main feedstocks used were food waste and empty fruit bunches (EFB), an agricultural waste from palm oil, and were subjected to characterization to determine whether its compositions were favourable to be used in anaerobic digestion. Once characterized, the two feedstocks were mixed at seven different mixing ratios, known as anaerobic co-digestion, to determine the effect of co-digestion on the biogas production. In addition to co-digestion, rice husk biochar adsorbent was added into the anaerobic co-digestion process as a supplementary material, to determine the effect of biochar addition on the biogas production. To further investigate the effect of co-digestion, Response Surface Methodology (RSM) was used to develop a mathematical model which best described the effect of co-digestion on the biogas production. Characterization of the feedstocks in terms of elemental analysis, food waste nutrients analysis, and EFB lignocellulosic analysis determined that the two feedstocks were suitable to be used for anaerobic digestion. When the two feedstocks were mixed under co-digestion, an increment in biogas production, 51%-154%, compared to single feedstock digestion, was recorded. When biochar was added into the co-digested mixture, a further 6.7% increment in biogas production was recorded. From the RSM analysis based on effect of co-digestion, a base-log (log₁₀) transformed model was developed with high accuracy, R^2 value of 0.9682, in which both food waste and EFB weights, and their combined weight ratios, were found to be significant factors in determining the overall biogas production.

ACKNOWLEDGEMENT

First, I would like to thank Allah for giving this opportunity to pursue my master's degree at Universiti Teknologi MARA (UiTM), and for completing this challenging study successfully. I would like to express my gratitude to my main supervisor Assoc. Prof. Dr. Azil Bahari Alias, and my co-supervisor Dr Nik Raikhan Nik Him, for all their support and countless guidance in helping me throughout this journey. I would also like to express my thanks to all the staff, lecturers, and fellow friends at the Faculty of Chemical Engineering, UiTM Shah Alam who helped me, whether directly or indirectly, in completing this epic journey.

I would also dedicate this thesis for my loving parents and family members, who gave me much spiritual as well as financial support to help me complete this challenging project up to the very end.

Finally, my appreciation also goes to all the suppliers who helped provide all the essential equipment and materials needed for this project, whom which without their help, this project could not have been carried out smoothly. Alhamdulillah.

TABLE OF CONTENTS

			Page		
CON	CONFIRMATION BY PANEL OF EXAMINERS				
AUTHOR'S DECLARATION					
ABST	ABSTRACT				
ACK	ACKNOWLEDGEMENT				
TABLE OF CONTENTS					
LIST	OF TA	BLES	ix		
LIST OF FIGURES					
LIST OF PLATES					
СНА	PTER (ONE INTRODUCTION	1		
1.1	Resear	rch Background	1		
1.2	Proble	em Statement	3		
1.3	Object	tives	6		
1.4	Resear	rch Hypothesis	6		
1.5	Scope	s and Limitations of Research	7		
1.6	Signif	icance of Research	8		
СНА	PTER 1	IWO LITERATURE REVIEW	9		
2.1	Food	Waste	9		
2.2	Empty Fruit Bunches (EFB)		11		
2.3	Anaerobic Digestion Process		12		
	2.3.1	Effect of Feedstock Composition on Anaerobic Digestion	14		
	2.3.2	Effect of Co-digestion on Anaerobic Digestion	18		
	2.3.3	Effect of Addition of Supplementary Materials on			
		Anaerobic Digestion	23		
	2.3.4	Effect of Process Operating Conditions on Anaerobic Digestion	29		
2.4	Response Surface Methodology (RSM)		36		
	2.4.1	Central Composite Design (CCD)	36		
	2.4.2	Box-Behnken Design	36		

	2.4.3	Three-level Factorial Design	37	
	2.4.4	Mixture Design	37	
	2.4.5	Past Literatures on Applications of Various RSM Designs	37	
2.5	Concl	usions from Literature Review	41	
СНА	PTER	THREE RESEARCH METHODOLOGY	43	
3.1	Introd	uction	43	
3.2	Samp	Sample Preparation		
3.3	Characterization of Samples			
	3.3.1	Elemental Analysis	47	
	3.3.2	Nutrients Analysis for Food Waste	48	
	3.3.3	Lignocellulosic Analysis of EFB	55	
3.4	Exper	imental Setup for Anaerobic Digestion	59	
3.5	Exper	Experimental Design for Anaerobic Digestion		
3.6	Experimental Procedure for Anaerobic Digestion			
3.7	Bioga	s Analysis	64	
3.8	Response Surface Methodology (RSM)			
	3.8.1	Procedure For Developing Model Using Mixture Design RSM		
		Using Design Expert 11.0 Software	66	
СНА	PTER I	FOUR RESULTS AND DISCUSSION	76	
4.1	Introd	uction	76	
4.2	Results for Objective 1 (Characterization of Feedstocks)			
	4.2.1	Characterization of Food Waste	77	
	4.2.2	Characterization of Empty Fruit Bunches (EFB)	84	
	4.2.3	Characterization of Food Waste & Empty Fruit Bunches (EFB)		
		Mixed for Co-digestion	87	
4.3	Results for Objective 2 (Biogas Production from Anaerobic Digestion)			
	4.3.1	Effect of Co-digestion	90	
	4.3.2	Relationship between Co-digestion Effect and Carbon-Nitrogen		
		(C/N) Ratio	99	
	4.3.3	Effect of Addition of Biochar in Anaerobic Co-digestion	102	
4.4	Results for Objective 3 (Modelling) 1			