FINAL YEAR PROJECT REPORT

DIPLOMA IN MECHANICAL ENGG. (AEROSPACE)

FACULTY OF MECHANICAL ENGINEERING MARA UNIVERSITY OF TECHNOLOGY (UITM) 40450 SHAH ALAM SELANGOR D.E.

ADVANCED COMPOSITE MATERIALS IN AIRCRAFT APPLICATIONS

MOHD.NIZAM BIN MOHD.ZAIN 97195161 KM 13
MOHD.NAZIRUDIN BIN TAHIR 97195154 KM 13

APRIL 2000

ACKNOWLEDGEMENT

Assalamualaikum w.b.t. First of all we would like to thank to Allah S.W.T for giving us the strength and patience to produce this report.

Secondly, our course tutors of aerospace engineering, Encik Zaidi bin mohd.

Zain, our lecturer and project advisor, Ir.Dr.Mohamad Nor Berhan, our

Superintendent of mechanical component workshop Encik Ahmad Izzudin Ab. Rahim

for their guidance and valuable advises.

We also would like to thank workers at Fiberglass & Composite workshop especially foreman, Encik Hj.Daud, and leading hand, Mr.sivabalan. Without their assistance we cannot produce such report with valuable resources they provided.

Thank you to training Co-ordination Unit (TCU), for giving us one-day off (every Wednesday) to do researched and meeting people which related to our report, Mechanical Workshop, for giving us the opportunity to look at the manuals and related documents for our report, MASA, for providing us with a lot of resources and facilities, miss Yusni from IT and re-engineering Department, thank you for the scanners and computers, UiTM, for references and everybody, which may be directly or indirectly involved in making this report possible.

Lastly, we would like to convey our gratitude to our parents for their support and all my friends for helping us.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1		
1.2	NATURAL COMPOSITE	2
1.3	ADVANCED COMPOSITE MATERIALS	3
	1.3.1 REINFORCEMENT	
	1.3.1.1 FIBERGLASS	
	1.3.1.2 CARBON FIBER	
	1.3.1.3 ARAMID	
	1.3.1.5 GRAPHITE	
	1.3.1.6 PREPREG.	
	1.3.2 RESIN (MATRIX)	
	1.3.2.1 EPOXIES	7
	1.3.3 ADVANTAGES OF ADVANCED COMPOSITES	9
	1.3.4 DISADVANTAGES OF ADVANCED COMPOSITES	10
2.0	FAILURE PREDICTION WITH ADVANCED COMPOSITES	
2.1	FAILURE MODES OF ADVANCED COMPOSITES	
_	2.1.1 DELAMINATION	
	2.1.2 CRACKS 2.1.3 HOLE DAMAGE	
	2.1.4 LIGHTNING-STRIKE	
	2 FAILURE INSPECTION OF ADVANCED COMPOSITES	
3.0	MAINTENANCE OF ADVANCED COMPOSITES	14
3.1	REPAIR OF ADVANCED COMPOSITES	15
3	3.1.1 REPAIR METHODS	
	3.1.1.1 HOT BOND REPAIRS	
-	3.1.1.2 COLD BOND REPAIRS.	
	3.1.2 REPAIR PROCEDURES	
3	3.1.3 REPAIR MATERIALS	21
	3.1.3.1 PREPREG	
	3.1.3.2 WET LAY UP	
	3.1.3.3 CHARACTERISTICS OF PREPREGS AND WET LAY UP	
	3.1.3.5 FILM ADHESIVE	
	3.1.3.6 HONEYCOMB CORE	

3.1.4 REPAIR FACILITIES	24		
3.1.4.1 LAY UP AREA	24		
3.1.4.2 FREEZER	24		
3.1.4.3 OVENS, AUTOCLAVE AND HEATING BLANKETS	25		
3.1.4.4 VACUUM	26		
3.1.4.5 TOOLING	27		
3.2 REQUIREMENTS	28		
3.2.1 PERSONNEL	28		
3.2.2 TOOLS AND EQUIPMENT	29		
3.2.3 MANUALS			
4.0 ADVANCED COMPOSITES APPLICATIONS	31		
4.1 AIRCRAFT APPLICATIONS	32		
4.1.1 737-400 AIRCRAFT	33		
4.1.2 757 AIRCRAFT			
4.1.3 767 AIRCRAFT			
4.1.4 777 AIRCRAFT			
4.1.5 HELICOPTER BLADE AND ROTOR			
4.1.6 HIGH VELOCITY AIRCRAFT			
4.1.7 CONTAINMENT PAD.			
4.2 AIRCRAFT INTERIOR APPLICATION			
4.2.1 AIRCRAFT FLOORING	41		
4.2.2 CARGO BAY LINER			
4.2.3 AIRBUS A330 GALLEY AND LAVATORY			
1.2.5 MIGGINSO GREET AND EAVATORT	······································		
5.0 STANDARD PRACTICES	43		
5.1 SAFETY IN HANDLING ADVANCED COMPOSITES	43		

CONCLUSION	46		
SUGGESTION			
APPENDIX			
BIBLIOGRAPHY			

1.0 INTRODUCTION

The exciting thing about composites is that an ordinary person can make things that they have never been able to make before, such as bathtubs, a boat, or a motorcycle. Race car bodies, canoes, airplanes, model aircraft, jet skis, boats, sculpture, as well as traditional industrial molding and model making have taken on a new dimension as fiberglass becomes less of a mystery, easier to use, and easier to buy.

The materials that are used are easiest to understand when you think about something like a boat. A boat is hard, it doesn't bend, and it certainly doesn't take in water. Most people think of a boat as being made of "fiberglass."

1.1 **DEFINITION**

Composites are made from two or more distinct materials that when combined together are better than each other would be separately which is reinforcing elements, fillers, and composite matrix or binder differing in a form or composition on a micro scale.

Advanced composite is a composites material applicable to aerospace construction and made by imbedding high-strength, high-modulus fibers within an essentially homogeneous matrix.