UNIVERSITITEKNOLOGIMARA

EVEN-ODD SCHEDULING BASED ENERGY EFFICIENT ROUTING FOR WIRELESS SENSOR NETWORK (WSN)

MUHAMMAD ZAFAR IQBAL KHAN

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Computer Science)

Faculty of Computer and Mathematical Sciences

October 2022

ABSTRACT

Several routing protocols have been developed and proposed in the literature for the development of energy-efficient routing strategies of Wireless Sensor Networks. The necessity of saving energy is primarily the need of technology and scarcity of energy limited resources of wireless sensor network. Wireless Sensor Network (WSN) is basically composed of battery powered devices which have an obvious limitation of energy on sensors nodes, so it is the foremost motivation to develop a method to save energy of wireless sensor networks where networks are kept alive for a long time. The aim of this research is to design and develop a routing protocol, which uses less energy through its efficient structural organization and methodology, and keeps the sensor network alive for a longer time. To achieve the task of a longer network lifetime and higher average node energy, we have proposed an energy-efficient routing protocol motivated from the concept of well-known Low Energy Adaptive Cluster Hierarchy routing algorithm also known as LEACH, and optimized it with the concept of alternate hitting, which means the even-odd scheduling-based routing. The proposed routing protocol known as the Even-Odd Scheduling-based LEACH or simply EOS-LEACH is the main contribution for this research. This method indexes nodes evenly and oddly during the transmission of data. The goal behind this scheme is to keep node standby for one subsequent round after data transmission or when it is ready to send data, this will save the energy of node which send data frequently. If any node which is not in the queue or doesn't have data will not consume any significant energy and thus entire network saves energy after each transmission round. The performance of the proposed routing algorithm has been evaluated through simulations of well-known software MATLAB. Using the simulation software, it was observed that the alive nodes are higher in numbers i.e. 189 nodes after 500 rounds for the proposed routing algorithm compared to the previous methods which had only 150 alive nodes. It was also observed that the proposed routing algorithm outperforms the LEACH in network lifetime with 1697 rounds as compared to the original LEACH of with just 803 rounds. In addition, the network performance has also increased by using the proposed routing algorithm with a throughput of 147.8207 as compared to just 46.0472 with the original LEACH. In future, the proposed algorithm can be further enhanced with data aggregation efficiency, probabilistically election of cluster heads, and other energy-consuming parameters.

ACKNOWLEDGEMENT

Firstly, I wish to thank Allah for giving me the opportunity to succsuefully defend my PhD and for completing this long and challenging journey. Mean while I owe my deepest thanks and gratitude to my supervisor, Associate Professor Dr. Kamarularifin Abd Jalil as without his continuous optimism, encouragement and support this research would hardly been completed and overall it is a great honour for me to work under his supervision.

My appreciation also goes to my co-supervisor, Dr Faisal Ibrahim, FSKM Post Graduate Department and staff for their support and guidance throughout my PhD journey.

Finally, this thesis is dedicated to my father as he is the one who motivated me the most to pursue my Post Graduate degree and he is the one who taught me to perform all of life's task, no matter how big or small. He's the man I will always aspire to be. This piece of victory is dedicated to him. Alhamdulilah.

TABLE OF CONTENTS

Page

CO	NFIDMAT	FION BY PANEL OF EXAMINERS	ii		
	AUTHOR'S DECLARATION				
	ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS				
LIST OF TABLES LIST OF FIGURES					
					LIS
СН	APTER O	NE: INTRODUCTION	1		
1.1	Backgrou	and and Motivation of the Study	1		
1.2	Wireless	Senor Network	2		
1.3	Routing	in Wireless Sensor Network	3		
1.4	Research	Questions	4		
1.5	Problem	Statement	5		
1.6	Research	Objectives	5		
1.7	Significa	nce of the Research	5		
1.8	Scope of Research				
1.9	Thesis O	rganization	6		
СН	APTER T	WO: LITERATURE REVIEW	7		
2.1	Introduction to Wireless Sensor Network				
	2.1.1	Architecture of Wireless Sensor Node	9		
	2.1.2	Basic Structure of a Sensor Node	9		
	2.1.3	Wireless Senor Network Design Challenges and Constraints	12		
	2.1.4	Design Challenges for Routing	13		
2.2	Wireless Sensor Network Applications				
	2.2.1	Intruder Detection	16		
	2.2.2	Battlefield Surveillance	16		

vi

	2.2.3	Industrial Monitoring	17
	2.2.4	Habitat Monitoring	17
	2.2.5	Earth/Environment Monitoring:	18
2.3	Wireless S	ensor Network Implementation Requirements	18
2.4	Architecture and Topology		20
	2.4.1	Randomly Deployed Nodes	21
	2.4.2	Flat Network	22
	2.4.3	Hierarchical Network	23
		2.4.3.1 Tree Based	23
		2.4.3.2 Mesh Based	25
		2.4.3.3 Cluster Based	25
2.5	Wireless Sensor Network Routing Protocol		34
	2.5.1	Multipath Routing	34
	2.5.2	Data Aggregation	36
	2.5.3	Clustering Based	37
2.6	Low Energy Adaptive Cluster Hierarchy routing algorithm (LEACH)		
	Protocol		38
	2.6.1	LEACH-SRDC	39
	2.6.2	Clusters-Head Selection	40
	2.6.3	Advertisement Phase	40
	2.6.4	Cluster Setup Phase	41
	2.6.5	Schedule Creation	41
	2.6.6	Data Transmission	41
	2.6.7	Operations of LEACH	42
2.7	Major Research Issues in WSN		42
	2.7.1	Optimized Coverage of the Network	43
	2.7.2	Optimal Deployment Pattern	44
	2.7.3	Many-to-one Data Forwarding	45
	2.7.4	Coverage Determination	45
	2.7.5	Coverage Restoration	45
	2.7.6	Power Management	46
	2.7.7	Protocol Design	46
	2.7.8	Scalability	46
	2.7.9	Adaptability	46