UNIVERSITI TEKNOLOGI MARA

SINKHOLE SUSCEPTIBILITY MAPPING USING ANALYTICAL HIERARCHICAL PROCESS (AHP) AND PROBABILISTIC METHOD: A CASE STUDY OF KUALA LUMPUR AND AMPANG JAYA

MOHD ASRI HAKIM BIN MOHD ROSDI

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Built Environment)

Faculty of Architecture, Planning and Survey

October 2022

ABSTRACT

Since 1968, the increasing numbers of sinkhole disaster have been reported in Kuala Lumpur and the vicinity areas. As the results, it gives a serious threat for human being, assets and structure of the country especially in the capital city. In order to tackle this situation, a Sinkhole Hazard Model (ShM) was produced with integration of GIS environment by applying Analytical Hierarchical Process (AHP) method and probabilistic method to generate a sinkhole susceptibility hazard map for the particular area. There are five consecutive criteria chosen namely Lithology (LT), Soil Types (ST), Land Use (LU), Groundwater Level Decline (GLD) and Proximity to Groundwater Wells (PGW). Based on the calculation of AHP weightage, LT and GLD give the highest impact to the development of this disaster which is 0.46 and 0.30 respectively while according to probabilistic calculation. GLD and LU give the greatest effect of the sinkhole development which is 4.74 and 3.12 respectively. A sinkhole susceptibility hazard zones for both methods was classified into five classes namely none, low, medium, high and very high. The results obtained were validated with the previous inventory data of 33 sinkholes. From the analysis, it shows that the accuracy assessment of the model indicates 45.45% and 15.16% for AHP method of the sinkhole development fall within high and very high hazard regions respectively. For probabilistic method, the accuracy assessment of the model indicates 36.37% and 39.39% of sinkhole formation fall within high and very high hazard zones respectively. Based on this final outcome, it clearly shows that the integration of GIS, AHP and probabilistic approach is useful to predict natural disaster such as sinkhole hazard development.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my MSc and for completing this long and challenging journey successfully. My gratitude and thanks go to my main supervisor Sr Dr Ainon Nisa Binti Othman that always give their expertise, knowledge and experience. Not forget to my second supervisor Prof Sr Dr Zulkiflee Bin Abd Latif that always give me strength and motivation word in order to finished this thesis. Without both of them, the process to completing this thesis will not going smoothly.

My appreciation goes to the IPSIS staff and coordinator of postgraduate's student that always take care and remind all the students in various aspects to make sure the students don't miss any latest information. Special thanks to my colleagues and friends for helping me with this thesis and always give the greatest motivation words to myself.

Finally, this thesis is dedicated to the person that I love most which is my mother and my father for the vision, their prayers, expenses incurred and determination to educate me. Not to forget my wife who has always given me great enthusiasm in finishing this thesis. This piece of victory is dedicated to all of you. Thank you so much.

TABLE OF CONTENTS

CON	ii	
AUT	iii	
ABS	iv	
ACK	NOWLEDGEMENT	v
TAB	vi	
LIST	COF TABLES	ix
LIST	OF FIGURES	X
LIST	xi	
LIST	COF ABBREVIATIONS	xii
СНА	13	
1.1	Research Background	13
1.2	Problem Statement	17
1.3	Research Question	19
1.4	Research Objectives	19
1.5	Scope and Limitation of Research	20
1.6	General Methodology	20
1.7	Significance of Study	21
СНА	PTER TWO LITERATURE REVIEW	22
2.1	Introduction	22
2.2	Sinkhole Definitions	22
2.3	Formation and Effects of Sinkhole Phenomenon	23
2.4	Divisions of Sinkhole	24
	2.4.1 Dissolution Sinkhole	25
	2.4.2 Cover-Subsidence Sinkhole	25
	2.4.3 Cover-Collapse Sinkhole	26
2.5	Factors Inducing Sinkhole Formation	26
	2.5.1 Bedrock Lithology	27

	2.5.2	Soil Types	28	
	2.5.3	Land Used	30	
	2.5.4	Water Level Decline	31	
	2.5.5	Proximity to Groundwater Wells	31	
2.6	Heuris	stic Method: Analytical Hierarchical Process (AHP) Technique	32	
2.7	Statistical Method: Probabilistic Technique			
2.8	Multicriteria Decision Making (MCDM)		34	
2.9	GIS Based Multi-Criteria Decision Analysis (GIS-MCDA)			
2.10	Previc	ous Sinkhole Incident using GIS-MCDM	35	
CHA	PTER 1	THREE RESEARCH METHODOLOGY	37	
3.1	Introd	uction	37	
3.2	Resear	rch Methodology	38	
3.3	Projec	t Planning	39	
	3.3.1	Preliminary Study	39	
	3.3.2	Selection of Software Used	39	
	3.3.3	Selection of Study Area	40	
	3.3.4	Criteria Determination	41	
3.4	.4 Data Collection		41	
	3.4.1	Primary Data	42	
	3.4.2	Secondary Data	42	
3.5	Data Pre-Processing and Processing			
	3.5.1	Pre-Processing and Processing Using Analytical Hierarchical	Process	
		(AHP) Method	44	
	3.5.2	Pre- Processing and Processing Using Probabilistic Method	56	
3.6	Data A	Analysis	61	
3.7	Chapte	er Summary	62	
CHA	PTER I	FOUR RESULTS AND DISCUSSION	63	
4.1	Introduction 63			
4.2	2 Sinkhole Susceptibility Hazard Zone: Weighted Map of Each Inducing (
			63	
	4.2.1	Weightage Map of Lithology (LT)	64	