

DESIGN A SMALL WIND TUNNEL STUDIES FOR BOUNDARY LAYER EXPERIMENT

MOHD EFFANDY BIN MUKHTAR (2002334675)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering of Mechanical (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > **SEPTEMBER 2005**

TABLE OF CONTENT

a_y

CONTENTS	PAGE
ACKNOWLEDGEMENT	ì
ABSTRACT	ii
LIST OF FIGURES	iii
LIST OF TABLES	V
LIST OF ABBREVIATIONS	vi

CHAPTER 1 INTRODUCTION

1.1	Wind Tunnel Work Operation	2			
1.2	Types of Wind Tunnels	3			
1.3	Parts of Wind Tunnel	3			
	1.3.1 Settling Chamber	4			
	1.3.2 Contraction Cone	4			
	1.3.3 The Test Section	4			
	1.3.4 The Diffuser	4			
	1.3.5 Drive Section	4			
1.4	PROBLEM STATEMENT				
1.5	SIGNIFICANCE OF PROJECT				
1.6	EDUCATIONAL OBJECTIVES				
1.7	METHODOLOGY				
1.8	SCOPE OF PROJECT				

CHAPTER 2 LITERATURE REVIEW

	2.0	Conceptual Boundary Layer Theory	9
	2.1	Description of Boundary Layer	9
	2.2	Boundary Layer Parameters	
		2.2.1 Boundary Layer Thickness, δ	11
		2.2.2 Displacement Thickness, δ^{*}	11
		2.2.3 Momentum Thickness, θ	12
		2.2.4 Shape Factor, <i>H</i>	12
	2.3	Blasius's Exact Solution	12
CHAPTER 3	BOU	NDARY LAYER EXPERIMENT FEATURES	
	3.1	Principle of Experiments	14
	3.2	Objective/Purpose	15
CHAPTER 4	DETA	AIL DESIGN	7
	4.0	Flow Quality	16
	4.1	Contraction Cone	17
	4.2	Type of Power Sources	20
	4.3	Test section Shape	20
	4.4	Test section Dimension	21
	4.5	Installation of Honeycomb/Screen	23
	4.6	Joining Parts	23
	4.7	Fan section	24
	.4.8	Diffusers	24
	4.9	Model/ Specimen of Testing (Flat plate)	25
	4.10	Model Mounts	26
	4.11	Wind Tunnel Support	26
	4.12	Sound Level	27
	4.13	Material Selection	27

ACKNOWLEDGEMENT

First of all, among the rest, I would like to high express tour most thankfulness to Allah the Almighty because I could finish this thesis on time. In finish this thesis, patient and work is very important to me to contribute the ideas to create this thesis.

I would like to express my appreciations to my supervisor, En. Aman Mohd Ihsan for cooperation giving lot of information, advise and also time to fulfill my thesis.

Special thank to generous cooperation and support from my all friend. I also like to show my appreciation to all that directly or indirectly are responsible involves kind work ship.

Last but not least, to my beloved parent for giving me spirit and really understand my condition as a student. I do appreciate you all. Thank you.

ABSTRACT

Boundary layer theory is an essential knowledge in aerodynamics study. In order to study boundary layer, the appropriate equipments are required. The most popular equipment which often used is a wind tunnel. Because miniature, portable wind tunnels are not commercially available, I am designed a small portable wind tunnel for the Mechanical Engineering Department of Universiti Teknologi Mara. The wind tunnel was designed to deliver air at flow rates ranging from 0 to 25.6 cubic meter per minute by using 1/5 hp tube axial fan. The total pressure drop throughout the miniature, portable wind tunnel is 1.0786 inH20. Air speeds through the 0.0142m² test section are variable from 0m/s to 30m/s. The wind tunnel can incorporate two possible test configurations within the test section. The first utilizes smooth flat plate model, which attach to wall of test section. The second configuration incorporates a flat plate with rough surface. Pressure drop through the 600mm long test section is obtained mechanically with the use of pitot tube and a manometer. Velocity measurements are also obtained with a pitot tube and outputted to the inclined manometer. This study was made possible with the support of Department of Mechanical Engineering, Universiti Teknologi Mara (UITM) under the supervision of En. Aman Mohd Ihsan.