

FACULTY OF MECHANICAL ENGINEERING MARA UNIVERSITY OF TECHNOLOGY 40000 SHAH ALAM SELANGOR

MECHANICAL ENGINEERING

FINAL YEAR PROJECT

BACHELOR OF ENGINEERING (HONS.) IN MECHANICAL ENGINEERING

THE ENVIRONMENTAL EFFECT ON TENSILE STRENGTH AND MODULUS OF ELASTICITY OF PP/CLOTH COMPOSITE

PREPARED BY:

MOHD ISWANDI BIN ABDUL AZIZ

99107186

WAN AZMAN BIN HJ. WAN ALWI

99090660

ADVISOR:

EN. YAKUB MD.TAIB

JUNE 2000 - SEPTEMBER 2001

ACKNOWLEDGEMENT

A very thankful to ALLAH, that gives us strength and courage to complete this final project successful in order to receive our Bachelor of Engineering (Hons.) in Mechanical Engineering.

A lot of thanks to our parent and family, who given us full support and also they give us financial support went we are in desperate in financial in doing this final project.

To our advisor, En. Yakub Md.Taib that give us instruction and advice in making the final project successful. Not to forget to En. Abu (material laboratory) and En. Ayub (metallurgy laboratory) who give us real cooperation and sharing their knowledge in while working on the final project.

Lastly, to our friends who give us a big support and their knowledge is very useful to us for done this final project. Thank you for all.

ABSTRACT

This project is aimed to study the effect of environment on tensile strength and modulus of elasticity of PP/cloth composite. The hydrothermal effects that we choose for this project are water, salt water (NaCl with 1.5 mol viscosity) and acid hydrochloric (HCl with 1.5 mol viscosity).

PP/cloth epoxy laminates were prepared and all specimens have similar dimension (200mm X 25mm X 4mm). The water, salt water and acid hydrochloric are poured into aluminium can. Then, the specimens are immersed into them. The periods of immersion are 6 hours, 24 hours, 48 hours, 72 hours, and 120 hours. Next, data are taken and tensile tests are done immediately. The microstructures of the specimens are also studied. From the testing, the specimens are observed and the results are analyzed. For tensile test, the specimen was completely damage. From there, we plot the graphs for stress vs strain, load vs x-head, load vs extension and stiffness vs absorption. From microscopic study we found that the structure, distance and size of molecule on PP/cloth composite been expose to environment.

From the result we obtained, the highest absorption was at SN-3 (0.132 gram), the highest stress was at SW-5 (0.03001 MPa). If we compare with other specimens including specimen that had not been immersed in any environmental agent, SW-5 still has the highest stress. So from there we could conclude that as more water is absorbed in the specimen, the stresses would increase. Nevertheless, the absorption of any agent into the specimens would affect the specimen such that the stress of that specimen will decrease.

ACKNOWLEDGEMENT

ABSTRACT

CONTENTS

TITLE	ITLE			
1.0	GENE	ERAL INTRODUCTION	1	
2.0	INTRO	ODUCTION		
	2.1 2.2 2.3 2.4 2.5	INTRODUCTION TO COMPOSITE MATERIALS TYPE OF FIBER TYPE OF MATRIX MATERIALS EPOXY RESIN FAILURE FOR EPOXY RESIN POLYPROPYLENE COMPOSITE	3 6 8 10	
		 2.5.1 Fiber Pull-Out 2.5.2 Interlaminar 2.5.3 Interfacial Crack 2.5.4 Fibre Fracture 2.5.5 Matrix Fracture 	11 12 13 14 15	
	2.6	OTHER STUDIES		
		2.6.1 Study 1 (Absorption)2.6.2 Study 2 (Effect Of Environment Absorption)2.6.3 Study 3 (Degradation Of Glass Fiber)	17 18 19	
3.0	EXPE	RIMENTAL PROCEDURES		
	3.1	PREPARATION ON EPOXY LAY-UP		
		 3.1.1 Basic Equipments 3.1.2 Mixture Between Resin And Hardener 3.1.3 Prepared Epoxy 3.1.4 Process Cutting Specimen 	21 21 22 22	

	3.2	EXPERIMENTAL 1 (To Find Weight Fraction)	23		
	3.3	EXPERIMENTAL 2 (To Find The Effect Of Environment To The Composite)	24		
		3.3.1 Experimental Water Absorption On PP/Cloth Composite3.3.2 Experimental Salt Water Absorption On	25		
		PP/Cloth Composite 3.3.3 Experimental Acid Hydrochloric Absorption	26		
2		On PP/Cloth Composite	26		
	3.4	EXPERIMENTAL 3 (Tensile Test)			
		 3.4.1 Tensile Test Machine 3.4.2 Objective Of Tensile Test 3.4.3 Tensile Test Procedures 3.4.4 Testing Specimen With Tensile Machine 	26 27 27 28		
	3.5	EXPERIMENTAL 4 (Microstructure)	28		
4.0	EXPE	RIMENTAL RESULT			
	4.1	ABSORPTION TEST	31		
		4.1.1 Water Absorption Test4.1.2 Salt Water Absorption Test4.1.3 Acid Hydrochloric Absorption Test	31 31 32		
	4.2	THE TENSILE TEST	33		
		4.2.1 Immerse With Water4.2.2 Immerse With Salt Water4.2.3 Immerse With Acid Hydrochloric	33 34 35		
	4.5	MICROSTRUCTURE	37		
		4.5.1 Effect Of Water4.5.2 Effect Of Salt Water4.5.3 Effect Of Acid Hydrochloric	37 38 39		
5.0	OBSERVATION				
	5.1 5.2 5.3	OBSERVATION ON A SPECIMEN OBSERVATION ON TENSILE TEST OBSERVATION ON MICROSCOPIC	40 41 42		