FINAL YEAR PROJECT REPORT

DESIGN OF DROP WEIGHT TEST SYSTEM (SYSTEM, MECHANISM, CONTROL AND OPERATION)

By:

Mohamad Karim Bin Mansor 91603293

Wan Md. Nor Ismadi W. Ab Rahman 91010919

Advanced Diploma In Mechanical Engineering

Mechanical Engineering Department School Of Engineering MARA Institute of Technology Shah Alam, Selangor D.E

MAY 1994

ACKNOWLEDGEMENTS

Our thanks are due to our project advisor Dr Mohd Nor Said and En. Mohd Nasir Hussin who helped throughout our project. We would also like to convey our thanks to staff and lecturer CADEM Centre especially En. Abd Rahman in helping, to MHE-Demag (M) Sdn. Bhd especially David Wee Tong Hai, who have given us their cooperation throughtout the Hoist Unit and Circular magnet data. In addition our gratitude is due to our fathers, mothers, family, members and friends who have given us support throughtout our studies in ITM. Above all our greatest thanks to Allah s.w.t in giving us good healt and the trait of patience, both of which were instrumental in accomplising this final year project.

Mohamad Karim & Wan Md Nor Ismadi May 1994

ABSTRACT

In conducting experimental studies on material properties under impact loading, several types and techniques of impact test had been used. One of these types is through drop weight test. In drop-weight machine, the principle feature is the moving mass of known kinetic energy. The ideal impact test would be one in which all the energy of a blow is transmitted to the test specimen or the energy transmitted to the structure is minimum.

This project covers the determination of suitable system for lifting mass to the predetermined height and released it. A mass is held by an electromagnet which is raised by an electric hoist. The mass drops between guides when the vertical electromagnet deactivate. The mass known as plunger for striking the specimen is designed whilst the specified electromagnet and electric hoist are obtained from the local manufacturers. Weight of plunger varies with predetermined height as required for testing. maximum height of 10 m and mass of 500 kg ,the maximum velocity reach is 14 m/s as calculated. The layout for plunger configuration is provided.

LIST OF CONTENTS

ACKNO	WLE	DGEMENT	i
ABSTR	ACT		ii
LIST	OF	CONTENTS	iii
LIST	OF	FIGURES	viii
LIST	OF	TABLES	x .
ABBRE	VIA	TIONS AND SYMBOLS	хi
CHAPT	ER	1	-t
1.0 I	NTR	ODUCTION	1
1	.1	Literature Review	1
1	. 2	General Features of Drop	2
,		Weight Machines	
1	.3	Operation	3 °
1	. 4	Scope of Project	4
1	. 5	The Main Component of Drop	, 4
		weight Test System.	
CHAPT	ER	2.	
2.0 T	HEO	DRY	6
2	.1	Introduction	6
2	. 2	Ultimate Load	. 7
2	.3	Service Load	7
2	. 4	Factor of Safety	8
2	. 5	Impact Load	9
2	. 6	Impact Energy	11
2	. 7	Impact Stress	14

2.8 Impact from a Direct Load	15
2.9 Impact and Bending	16
CHAPTER 3.	
3.0 DESIGN OF PLUNGER	
3.1 Introduction	19
3.2 Description of Plunger	21
3.3 Assembly Chart	21
3.4 Load Criteria	24
3.4.1 Impact Load	24
3.5 Design Consideration for Plunger	25
3.5.1 Material Selection	25
3.5.2 Design Philosophies	26
3.5.3 Recommended Plunger Design	27
3.5.4 Determination of Component	27
Plunger	
3.6 Welding Cosideration	28
3.6.1 Welding Type	29
CHAPTER 4.	0 •
4.0 LIFTING MECHANISM	32
4.1 Introduction	32
4.2 Hoist Unit Description	33
4.3 Hoist Unit	34
4.3.1 Introduction	. 34
4.3.2 Lubricants and Lubrication	35
4.3.2.1 Oil-filled gear casings	35
4.3.2.2 Anti-friction bearings	36