DEPARTMENT OF MECHANICAL ENGINEERING MARA INSTITUTE OF TECHNOLOGY

SHAH ALAM

FRACTURE TOUGHNESS OF C-Mn (A516-70)

STEEL WELD METAL

BY

BORHAN'NUDIN BIN MOHAMAD

92015904

AND

ISMAIL BIN OMAR

92015950

NOVEMBER 1994

ABSTRACT.

The development of yielding fracture mechanics techniques has opened up the possibility of defining the levels of toughness required to minimise the risk of brittle fracture.

Approach of the fractures toughness of weldments is influenced by the preparation of welded test panels. The approach given particular reference to the fabrication of pressure vessel.

The tensile tests have been conducted on C-Mn (A516 70) weld metals at room temperature at constant displacement rate of 0.1 mm/s and transition load. From the test, yield strength and others mechanical properties for that metal can be obtained.Charpy V tests also have been done to measured the energy absorption at difference position on weldment.

The COD approach to yield fracture mechanics has been used to characterise fracture toughness at the initiation of tearing. The three point bend test using a notched bend configuration (SENB) accordance to BS 5762 :1979 [9] was performed in Dertac servo-hydraulic machine. The result of the test was 0.121 mm of the value of critical crack opening displacement δ_{IC} . From this value defect or crack size can be calculated.

í

ACKNOWLEDGEMENT

In the name of Allah and most beneficial and merciful.

The success of this report is the result of supervision and encouragement of the Project Advisor En. Yakub bin Md. Taib.

Sincere thanks to Dr. Mohd Noor bin Said for their guidance and suggestion. Particularly to INPENS College, Tepat Teknik Sdn. Bhd. and SIRIM for the preparation of the test specimens and testing.

Thanks are also due to En. Azman Majid and En. Jamal Said of INPENS College, and En. Hayub for their useful help in all the tests involving the use of the Dartec Universal Testing Machine.

Finally, thanks to families, our colleagues and Mara Institute of Technology who give us full support for the completion of our course.

CONTENTS

	Page No.
DECLARATION	а. 19 19
ABSTRACT	i
ACKNOWLEDGEMENT	ii
CONTENTS	iii
NOMENCLATURE	vi
CHAPTER 1 - INTRODUCTION	
1.1 An Overview	1.
CHAPTER 2 - LITERATURE REVIEW	
2.1 Basic Concept of Fracture Mechanic	4
2.2 Griffith Theory	4
2.3 Modes of Crack Tip Deformation	`5
2.4 The Stress of Crack Tip	7
2.5 Stress Intensity Factor	10
2.6 Fracture Mechanics in Welded Joints	11
2.7 Basic Pre-Cracking / Fatigue Behaviour	12
2.7.1 Fatigue Loading	15
2.8 The Stress Concentration	19
2.9 Residual Stresses	20
2.10 Introduction to Linear Elastic Fracture	20
Mechanics (LEFM)	
2.11 The Crack Opening Displacement (COD)	23
Concept	
2.12 Practical Measurement of COD	29

CHAPTER 3 - MATERIAL PROPERTIES	
3.1 Factor Influencing Strength, Ductility, and	33
Hardness	k s
3.2 Material Chemical Compositions	33
3.3 Structure of Weld Metal	34
CHAPTER 4 - EXPERIMENTAL TECHNIQUE	
4.1 Machine and Equipment	36
4.2 Welding Procedure	37
4.3 Specimen Preparetion	38
4.3.1 Notched Impact Test	38
4.3.2 Tensile Test	39
4.3.3 COD Test	39
4.4 Testing Procedure	40
4.4.1 Charpy V Test	40
4.4.2 Tensile Test	40
4.4.3 Pre-Cracking	41
4.4.4 COD Test	42
CHAPTER 5 - RESULTS	
5.1 Charpy Test	43
5.2 Tensile Test	45
5.2.1 Stress-Strain Graph	45
5.3 Fatigue Pre-Cracking	50
5.4 Crack Opening Displacement Test	
5.4.1 Quasi-Static COD Test	52