

DEVELOPMENT OF A FRICTION AND WEAR TESTING MACHINE; DESIGN

MOHD FAIRUZ BIN HARON (2002333814)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi MARA (UiTM)

NOVEMBER 2005

ACKNOWLEDGEMENT

Praised be to Allah for all His gifts, gracious and merciful.

First of all, I would like to take this opportunity to express my gratitude and appreciation to my honorable supervisor, Associate Professor Dr. Darius Gnanaraj Solomon for his continue support, generous guidance, help, patience and encouragement in the duration of the thesis preparation until its completion. I feel so glad and lucky to have such a good advisor likes him and without his continuous support, I do not think that I could complete my final year project accordingly.

My deepest appreciation is convey to head researcher for LRT brake pad project's, Professor Dr. Mohammed Nor Berhan, for his continuous support especially in term of financial and approval.

I also like to acknowledge Mr. Fazli and Mr Johari, sheet metal workshop attendants, Mr. Farid, welding workshop attendant, Mr. Ziyaidi, strength laboratory attendant, Mr. Hazleen, computer laboratory attendant, library attendants, hardware and auto part dealers and other people who have helped and gave full cooperation to me.

Last but not least, thank you very much is extending to all my family members and friends especially to my classmates for their understanding and supporting either materially, morally or even ideas in making this report even better.

ABSTRACT

This report is about development of a pin on disc, friction and wear testing machine. For this project purposes, a flat mating surface between the disc and the specimen is focused. The scope of the project are to design a machine where it can hold a brake pad material having a rectangular shape of size 10mm x 10mm with operating speed of 95 rpm with up to 200N load and commissioning a friction and wear test in dry condition. In this report, some literature survey about this machine, its advantages and disadvantages over other types has been given. Some calculations such as calculation to find the motor horse power and shaft, technical drawings in forms of CATIA and AutoCAD, procedures in commissioning friction and wear test in dry condition and also the data analysis also has been shown. In completion of this report, related information has been gathered from many sources such as books, websites, catalogs and lecturers (through discussion).

TABLE OF CONTENTS

	CONTENTS		PAGE	
	PAG	E TITLE	i	
	ACK	NOWLEDGEMENT	ii	
	ABS	TRACT	iii	
	TAB	LE OF CONTENTS	iv	
	LIST	OF TABLES	vii	
	LIST	OF FIGURES	viii	
	LIST	OF ABBREVIATIONS	ix	
	LIST	OF DRAWINGS	xi	
CHAPTER I	INT	RODUCTION	ÿ	
	1.1	Introduction to tribology	1	
	1.2	Friction	2	
	1.3	Wear	4	
	1.4	Objective	7	
	1.5	Scope of project	7	
	1.6	Methodology	7	

CHAPTER II LITERATURE REVIEW

CHAPTER III

2.1	Definition	Definitions of title				
	2.1.1	Development	9			
	2.1.2	Friction	9			
	2.1.3	Wear	9			
	2.1.4	Testing	10			
	2.1.5	Machine	10			
	2.1.6	Design	10			
	2.1.7	Development of a friction and we	ar			
		testing machine	10			
2.2	What is	friction and wear test	10			
2.3	The nee	12				
2.4	Literatu	14				
2.5	Advanta	Advantages & disadvantages of a pin on disc,				
	friction	17				
DES	IGNS OF	A PIN ON DISC, FRICTION AND	WEAR			
TES	TING MA	CHINE				
3.1	Motor design					
3.2	Shaft design					
3.3	Bearing	Bearing design 27				
3.4	Structur	e design				
	3.4.1	Rectangular shape	29			
	3.4.2	L-shape	31			
3.5	Screw d	Screw design 33				
3.6	Machine drawings					
	3.6.1	AutoCAD drawing (side view)	36			
	3.6.2	AutoCAD drawing (top view)	37			