FINAL YEAR PROJECT REPORT

MAGNETIC CERAMIC

PREPARED BY :

ADNAN BIN BAKRI94825197SUHAIMI BIN MUKHTAR94824375

BACHELOR IN ENGINEERING (HONOURS) MECHANICAL SCHOOL OF MECHANICAL ENGINEERING MARA INSTITUTE OF TECHNOLOGY SHAH ALAM

MAY 1997

ACKNOWLEDGEMENTS

In the name of Allah s.w.t, the Most Beneficent and the Most Merciful who has given us the strength and ability to complete this project successfully.

We would like to express our sincere gratitude and appreciation to our final project supervisor, Pn. Nor Aini Bt. Wahab for her valuable guidance and consistent help, as well as her continuous encouragement and patience during the period of this project.

Special thanks to En. Ayub from Material Science Lab, School Of Mechanical Engineering for his help and guidance, En. Anuar from Industry Chemistry Lab, School of Applied Science and to all ITM staff whose involved directly or indirectly to our project.

Without the guidance and support of all those mentioned, this project could never been successful. Wassalam.

'TO ALL MAY ALLAH S.W.T BLESS YOU ALWAYS'.

ABSTRACT

This final year project report explained the research method of processing MgO-based soft ferrite for engineering and commercial application. Its also reports an investigation of the effects of CuO addition, sintering time and sintering temperature on the microstructure and final density of MgO-based soft ferrites which have been produced by traditional method. Samples have been studied by optical microscopy (400X) and ensities have been determined by Archimedes method.

The first chapter explained briefly on magnetic ceramic, this included explanation on classification, desired properties and application of magnetic ceramic. The second chapter is about general preparation of ferrites which start from powder and raw material preparation until the last process, i.e. sintering process. The third and fourth chapter reviewed about the chemical and microstructural consideration. Contents of the both chapter included explanation on the effects of iron variation; divalent iron variation; effects of powder processing; effects of grain size on permeability, power losses and coercivity.

The fifth chapter explained the experimental procedure which was done based on the general preparation of ferrites to produce the sample of magnetic ceramic. The results obtained from experiment are then shown in the sixth chapter. The seventh chapter consist of the overall discussion which was done based on the main objectives of our project, as stated earlier.

ïi

ACKNOWLEDGEMENT

ABSTRACT

1.0

INTRODUCTION 1.1 What is magnetic ceramic 1.2 Classification of magnetic ceramic 1.2.1 Spinel 1.2.2 Magnetoplumbite structure 1.2.3 Garnets 1.3 Application of magnetic ceramic 1.3.1 Deflection yoke 1.3.2 Antenna element 1.3.3 Permanent magnet material 1.3.4 Recording head ferrite

î

ü

1

2

2

4

5

6

6 7

7

7

2.0 FERRITE PROCESSING

2.1	Introduction	-2	9
2.2	Powder preparation		11
2.3	Calculation of weight and weighing		11
2.4	Blending		12
-2.5	Calcining		13
2.6	Milling		14
2.7	Pressing		15
2.8	Sintering		15

3.0 CHEMICAL CONSIDERATIONS

3.1	Introduction		17
3.2	Effects of iron variation	2	17
3.3	Effects of divalent iron variation		18
3.4	Effects of minor element		20
3.5	Effects of powder processing		21
3.6	Effects of CuO addition on sintering process		22

4.0 MICROSTRUCTURAL CONSIDERATIONS

4.1	Introduction	24
4.2	Effects of grain size on permeability	24
4.3	Effects of grain size on power loss	.26
4.4	Effects of grain size & porosity on coercivity	26
4.5	Effects of porosity on permeability	27

5.0 EXPERIMENTAL PROCEDURE

5.1	Raw materials & basic composition of powder	30
5.2	Calculation to find the weight of composition	30
5.3	Samples indication	32
5.4	Blending	33
5.5	Calcining	33
5.6	Pressing	34
5.7	Sintering	34
5.8	Metallography	
	5.8.1 Grinding	34
	5.8.2 Polishing	35
	5.8.3 Etching	35

6.0 RESULTS AND DISCUSSION

	6.1 Microstructure observation		structure observation	36
		6.1.1	Effects of CuO addition to grain size	
			and microstructure	50
		6.1.2	Effects of sintering time on microstructure	51
		6.1.3	Effects of sintering temperature on microstructure	52
	6.2	Densit	y study	53
		6.2.1	Effects of temperature on density	57
		6.2.2	Effects of sintering time on density	58
7.0	CONCLUSION		60	
8.0	RECOMMENDATIONS		61	
9.0	REF	ERENC	ES	62