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ABSTRACT 

Diabetes mellitus is a group of metabolic diseases which have several aetiologies that involve millions of people 

around the world. Hyperglycaemia, the hallmark of diabetes mellitus, causes detrimental complications such 

as nephropathy, neuropathy, retinopathy, and cardiovascular disease in both Type 1 and 2 diabetic patients. 

Inflammaging is recently linked with the development of diabetic complications. Local cellular senescence and 

its senescence-associated secretory phenotype (SASP) are the main contributors to inflammaging which can be 

triggered and accelerated by high glucose level. Regarding the oral cavity, hyperglycaemia, provokes the 

severity of inflammation and destruction in the tooth supporting structures (periodontium) and increases the 

susceptibility to periodontitis and eventually tooth loss. This paper provides insights into the impact of 

hyperglycaemia in causing cellular senescence of teeth supporting tissues and escalating periodontal tissue 

deterioration. 
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INTRODUCTION 

Cellular senescence is a state of permanent and irreversible cell cycle arrest, in which the cells become 

insensitive to mitogens and apoptotic signals (Muñoz-Espín & Serrano, 2014; Sharpless & Sherr, 2015). The 

cells also undergo a series of morphological and functional alterations, which may further inhibit or affect the 

normal physiological activity of the tissue surrounding the senescent cells (Regulski, 2017; Tominaga, 2015). 

Basically, Cellular senescence was described as a loss of proliferative capacity after multiple replications 

of human diploid fibroblasts (Chen, Li, & Tollefsbol, 2013; Kuilman, Michaloglou, Mooi, & Peeper, 2010). 

This form of replicative senescence was later shown to be due to telomere attrition. Telomere attrition can cause 

a temporary arrest of cell proliferation, permitting the cells to rebuild the damaged telomere. However, in case 

the DNA damage persists for a long term and surpasses a certain threshold, cells are fated to endure either 

irreversible cell cycle arrest or apoptosis (Cao et al., 2019). 

Although cellular senescence is considered as a defensive mechanism against tumour formation, 

persistence or accumulation of a high number of senescent cells can escalate tumour progression 

(Myrianthopoulos et al., 2019). This is attributed to few deleterious factors such as chronic inflammation, 

disruption of tissue function, excessive free radicals’ production, and senescence-associated secretory 

phenotype (SASP) growth factors  (Ovadya et al., 2018; Prata, Ovsyannikova, Tchkonia, & Kirkland, 2018). 

Senescent cells also promote the spread of senescence to nearby cells by producing paracrine signals and 

mediators (Davalos, Coppe, Campisi, & Desprez, 2010; Krtolica, Parrinello, Lockett, Desprez, & Campisi, 

2001). Cellular senescence can be triggered by various inducers, such as ionizing and non-ionizing radiation, 

genotoxic drugs, demethylating and acetylating agents, carcinogens, epigenetic changes, metabolic 

disturbances, oxidative stresses or hyperglycaemia (Hernandez-Segura, Brandenburg, & Demaria, 2018; Sidler, 

Kovalchuk, & Kovalchuk, 2017). 

Previous studies reported that senescent cells are the cause and consequence of metabolic alterations and 

tissue damage, and hence, they might be part of a pathogenic loop in diabetes and other systemic diseases 

(McHugh & Gil, 2018; Palmer et al., 2015). Animals and in-vitro studies showed that vascular endothelial cells 

were susceptible to glucose-induced senescence which consequently triggers the microvascular complications 

of diabetes, such as retinopathy, and nephropathy (Garofolo et al., 2019; Liu et al., 2020; Shosha et al., 2018). 

Senescent cells may contribute further to accelerate tissue injury and ultimately exacerbate the underlying 

complications of diabetes in advanced cases (Spinelli et al., 2020; Yokoi et al., 2006). 

HYPERGLYCAEMIA AND INDUCTION OF SENESCENCE 

Diabetes mellitus is an inducer of premature and accelerated cellular senescence and has been correlated with 

aging-related kidney diseases and cardiovascular diseases mediated by high levels of glucose (Burton & 

Faragher, 2018; Guo et al., 2020; Kruszynska, 2004; Peterson & Jovanovic, 1986; Verzola et al., 2008).  

Uncontrolled hyperglycaemic condition causes β-cell dysfunction, which consequently leads to 

accelerated cellular senescence and inadequate insulin secretion (Imai, 2020; Li et al., 2019). 

Accumulated senescent cells, in turn, adversely affect pancreatic β-cell function, and induces SASP-

mediated tissue damage (Docherty, O'Sullivan, Bonventre, & Ferenbach, 2019; He & Sharpless, 2017; McHugh 

& Gil, 2018).  SASP factors have a detrimental role in the immune-mediated senescent β-cell damage that 

ultimately leads to Type 1 diabetes (Brawerman & Thompson, 2020; Roep, Thomaidou, van Tienhoven, & 

Zaldumbide, 2020). As such, eradication of senescent β-cells stops the damage of immune-mediated β-cell and 

is effective to counteract diabetes (Thompson et al., 2019). 

Previous reports concluded that shared mechanisms between the cellular senescence and insulin resistance 

implies that by targeting and clearing the senescent cells, it is possible to alleviate both the metabolic 

dysfunction and complications of diabetes  (Palmer et al., 2015; Palmer et al., 2019). 
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Hyperglycaemia Induced Oxidative stress and SASP 

Hyperglycaemia alter the local environment of the whole body tissues (including the tooth supporting 

tissues) by inducing damaging agents and disrupting the natural tissue homeostasis (Giri et al., 2018). High 

level of oxidative stress was found to have a pivotal role in the pathogenesis of systemic and oral disease (Dos 

Santos, Tewari, & Mendes, 2019; Valko et al., 2007).   It enhances the development of diabetes complications 

whereas the metabolic disorder of diabetes exacerbates the production of mitochondrial superoxide in 

endothelial cells of both large and small vessels, and even in the myocardium (Folli et al., 2011; Giacco & 

Brownlee, 2010). 

Free radicals, , known as reactive oxygen species (ROS), are reactive chemical elements that are short 

lived species containing one or more unpaired electrons (Asmat, Abad, & Ismail, 2016). The production of 

these free radicals can be contemplated as a ‘two-edged’ sword because in periodontal health, ROS not only 

play an essential role in antimicrobial activity, but also in cell signalling and gene regulation (Wang, 2015). 

The balance between free radicals and antioxidants is essential for proper metabolic and physiological function 

(Lobo, Patil, Phatak, & Chandra, 2010). They are considered as essential evil messengers for signalling involved 

in the physiological control of cells differentiation and migration (Dröge, 2002; Winrow, Winyard, Morris, & 

Blake, 1993). The free radicals alter the normal redox status by passing the unpaired electron to the cells 

resulting in oxidation of nucleic acids, lipids, and proteins that consequently cause transient or sustained 

oxidative tissue damage (Pacifici & Davies, 1991; Phaniendra, Jestadi, & Periyasamy, 2015; Sung, Hsu, Chen, 

Lin, & Wu, 2013).  

Hyperglycaemia elevates the local burden of senescent cells in gingival tissue by increasing the release of 

SASP factors in vivo (Zhang et al., 2019). Previous studies showed that high glucose level induces senescence 

of macrophage and secretion of SASP factors through activation of NLRC4 inflammasome, a mechanism that 

ultimately provokes gingival cells senescence  (Yuan et al., 2016; Zhang et al., 2019). Hyperglycaemia 

aggravates the creation of advanced glycation end products (AGEs), triggers protein kinase C and polyol 

pathway, which increase the level of oxidative stress (Nowotny, Jung, Höhn, Weber, & Grune, 2015; Singh, 

Bali, Singh, & Jaggi, 2014). The production of irreversible AGEs induces a flawed constitution of the 

extracellular matrix (ECM) components and therefore adversely affects the physiologic and mechanical 

functions of the tissues involved. Subjects with DM would have their periodontal tissues ECM targeted by 

AGEs which contribute to the production of ROS and initiation and progression of periodontal disease (Gurav, 

2013; Schmidt et al., 1996). 

High glucose level and the accompanied oxidative stress facilitate the anaerobic bacterial invasion of 

periodontal structure that further activate NLRC4 (Hanes & Krishna, 2010; Harijith, Ebenezer, & Natarajan, 

2014; Velsko et al., 2015). NLRC4 activation is mostly related to components of Gram-negative bacteria (Olsen 

& Yilmaz, 2016) that subsequently lead to the activation of caspase-1 (CASP1) which induces a rapid and 

inflammatory form of cell death by pyroptosis (Rocha et al., 2020; Vladimer, Marty-Roix, Ghosh, Weng, & 

Lien, 2013).     

Unlike apoptosis (classic programmed cell death), pyroptosis (a program of cellular self-destruction that 

is intrinsically inflammatory) result in rapid release of cytosolic contents (Fink & Cookson, 2006) and spillage 

of proinflammatory mediators that further drive immune responses and promote inflammation in nearby host 

cells which consequently undergo senescence  (Aquino-Martinez, Khosla, Farr, & Monroe, 2020). In addition 

to triggering inflammatory host immune responses, activation of CASP1 and pyroptosis contributes to host 

defence by restricting the intracellular multiplication of invading pathogens that activate NLRC4 (Jorgensen, 

Zhang, Krantz, & Miao, 2016; Mariathasan & Monack, 2007). 

Chronic periodontal disease, in turn, may have an impact on systemic health (Jeffcoat, Jeffcoat, 

Gladowski, Bramson, & Blum, 2014; Winning & Linden, 2015). In patients with periodontal disease, chronic 

low-level systemic exposure to periodontal microorganisms may result in low-grade chronic inflammation 

leading to significant long term increase in levels of inflammatory cytokines and hormones in plasma (Kim & 

Amar, 2006). This condition is conducive to initiate or aggravate the existing systemic pathological condition 

such as insulin resistance (Santos Tunes, Foss-Freitas, & Nogueira-Filho Gda, 2010) . 
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Hyperglycaemia-induced telomer shortening 

Telomeres are normally shortened as a result of cell division that ultimately leads to replicative cellular 

senescence (van Deursen, 2014; Victorelli & Passos, 2017). Although mitotic division of cell is the main cause 

of telomere length reduction, this process can be influenced or accelerated when cells are exposed to oxidative 

stress or genotoxic agents, (Blazkova et al., 2010; Coluzzi et al., 2014; Trusina, 2014; Venkatachalam, Surana, 

& Clément, 2017).  

Various studies have reported that oxidative stress and exposure to ROS accelerate telomere shortening in 

human cells in-vitro (Ahmed & Lingner, 2018). The ROS high-level induced by hyperglycaemia detrimentally 

causes telomere erosion and dysfunction (Barnes, Fouquerel, & Opresko, 2019; Davalli, Mitic, Caporali, 

Lauriola, & D'Arca, 2016). The accelerated telomere shortening may disrupt the process of DNA repair that 

ultimately result in DNA damage response and senescence (Victorelli & Passos, 2017).  Other factors, among 

others, which accelerate telomer shortening and senescence are hydrogen peroxide and gram-negative bacterial 

products (Gölz et al., 2014; Huang et al., 2020). 

Effects of Hyperglycaemia on Chemokine Gradient and pH Level of Periodontal Pocket 

Periodontitis is a destructive inflammatory response of the periodontal tissues to the commensal bacteria 

and opportunistic pathogens which inhabit the gingival crevice (Bostanci & Belibasakis, 2018). As the disease 

progresses, gingival crevice becomes the part of battle zone which converts to a periodontal pocket. The 

gingival crevice or the periodontal pocket is bathed continuously with gingival crevicular fluid, a transepithelial 

transudate in healthy status of gingival crevice, or inflammatory exudate which floods into the periodontal 

pocket (Barros, Williams, Offenbacher, & Morelli, 2016).  

 In the healthy periodontium, the gingival tissue interstitial fluid (transudate) is produced and passed 

through the sulcular epithelium by an osmotic gradient. However, PMNs can always be found in the sulcus, 

though the flow of GCF is relatively low (Saito et al., 1987). The exudate flows due to the increased permeability 

of the vessels underlying the junctional epithelium. It carries inflammatory mediators and immune cells to the 

periodontal pocket and contains bacterial antigens, and enzymes of both host and bacterial origin (Krasse, 

1996). 

Bacterial pathogenicity is enhanced by modifying factors made by hyperglycaemia altering the host 

immune response (Berbudi, Rahmadika, Tjahjadi, & Ruslami, 2020; Hodgson et al., 2015). In diabetic patient, 

the pH of GCF is increased as a consequence of hyperglycaemia, together with bacterial invasion, oxidative 

stress accompanied by cellular senescence (Hanes & Krishna, 2010; Koidou, Hagi-Pavli, Cross, Nibali, & 

Donos, 2022). The increased pH in subgingival area, in turn, enhances the growth of anaerobic bacteria and 

plays a role in the exacerbation of host tissue destruction due to the constant microbial proteolytic activity at 

alkaline pH (Takahashi & Schachtele, 1990). In addition, as the pH of the pocket rises, the activity of the trypsin-

like enzyme increases, which may enable the microbes to inactivate key components of the host defences such 

as immunoglobulins and complement (Jie Bao, Kari, Tervahartiala, Sorsa, & Meurman, 2008). Evading the 

host immune defence help in the progression of bacterial invasion. Further rise in pH in the gingival sulcus is 

thought to occur when subgingival bacteria extensively utilise proteins as primary nutrients.  Degradation of 

host tissues proteins by protease released by bacteria and host immune cells ends in the production of ammonia; 

which promotes the proliferation of acid-sensitive pathogenic bacteria (Dahlen, Basic, & Bylund, 2019; 

Niederman, Brunkhorst, Smith, Weinreb, & Ryder, 1990) and facilitate the precipitation of GCF minerals 

contents in the subgingival plaque to form calculus (Eley & Cox, 2003; Ramadan, Hariyani, Indrawati, Ridwan, 

& Diyatri, 2020; Takahashi, 2015).  

It was reported that expression of cytokines such as IL-6 and 8 was reduced at low pH of 5.5–6.0 (Hackett, 

Trinick, Rose, Flanagan, & McNamara, 2016). This may explain why the increased alkalinization of GCF is a 

conducive factor to accelerate the inevitable destruction of periodontal tissues in diabetic patients. Furthermore, 

diabetic patient has an inadequate local response by PMN, partially explained by an altered chemokine gradient, 

which may contribute to periodontal disease initiation and progression (Engebretson, Vossughi, Hey-Hadavi, 

Emingil, & Grbic, 2006). 
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CONCLUSION  

Hyperglycaemia s is one of the major risk factors for periodontitis. Uncontrolled or poorly controlled 

individuals with diabetes are more likely to have periodontitis. If there are effective measures to alleviate 

prediabetes and cure early diabetes, then the progression of hyperglycaemia could be prevented or delayed, 

which may eventually lead to reduced progression of periodontitis. Aging and altered immune response due to 

aging are associated both with a progressive decline in glucose tolerance and inadvertently with increasing 

prevalence and severity of periodontal diseases.  
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