EFFECTS OF THAND ST-SITE SUBSTITUTIONS ON TIST_CECU₂O7 SUPERCONDUCTORS

EUTEAU OF PESSARGH AND GONSULTANGY UNIVERSITE TEKNOLOGE MARA 40430 SMAH ALAM. STLAZGOR MALAYSIA

PREPARD BY:

AHMAD KAMAL HAYATI BIN YAHYA NCRAZILA IBRAHM FAIZAH MD, SALLIM

OGIOBER 2001

CONTENTS

		Page
ACKNOWLED	GEMENTS	iv
CONTENTS		V
LIST OF FIGURES		viii
LIST OF SYME	BOLS AND ABBREVIATIONS	X .
LIST OF TABL	JES	xii
ABSTRACT	d.	xiii
CHAPTER I	INTRODUCTION	1
CHAPTER II	BACKGROUND OF SUPERCONDUCTIVITY	4
2.1	Introduction	4
2.2	Properties of Superconductors	5
	2.2.1 Critical Temperature (T_c)	5
	2.2.2 The Meissner Effect	6
	2.2.3 Critical Magnetic Field	7
	2.2.4 Critical Current Density (J_c)	8
	2.2.5 Types of Superconductors	8
	2.2.5.1 Type I Superconductor	9
	2.2.5.2 Type II Superconductor	10
2.3	The History of Superconductors	11
2.4	Theory of Superconductor	14
	2.4.1 BCS Theory	14

2.5	Relation Between J_c , T_c and H_c	16
2.6	High Temperature Superconductors and Related Compounds	18
	2.6.1 YBCO	18
	2.6.2 Thallium Based Superconductors	20
2.7	Applications of Superconductors	22
CHAPTER III	SAMPLES PREPARATION AND EXPERIMENTAL DETAILS	25
3.1	Preparation of Bulk Samples	25
3.2	Basic Sample Characterization Methods	29
x	3.2.1 D.C. Electrical Resistance	29
	3.2.2 X-ray Powder Diffraction	31
CHAPTER IV	RESULTS AND ANALYSIS	34
4.1	$Tl_{0.8}Pb_{0.2}Sr_2(Sr_{1-x}Ti_x)Cu_2O_7$ Composition	34
	4.1.1 X-ray Diffraction	34
ı	4.1.2 Electrical Measurements4.1.2.1 Temperature Dependent Resistance4.1.2.2 Room Temperature Resistivity	44 44 47
4.2	TlSr _{2-x} Ti _x CaCu ₂ O ₇ Composition	49
	4.2.1 X-ray Diffraction	49
	 4.2.2 Electrical Measurements 4.2.2.1 Temperature Dependent Resistance 4.2.2.2 Room Temperature Resistivity 	58 58 61

ABSTRACT

In this project, the formation of superconducting phases prepared from nominal starting compositions of $Tl_{0.8}Pb_{0.2}Sr_2(Sr_{1-x}Ti_x)Cu_2O_7$ (x = 0.0 to 0.7) and $TlSr_{2-x}Ti_xCaCu_2O_7$ (x = 0 to 0.2) have been investigated. $Tl_{0.8}Pb_{0.2}Sr_2(Sr_{1-x}Ti_x)Cu_2O_7$ formed non-superconducting single phased Tl1202 (x = 0 to 0.4) and minor Tl1212 phase (x = 0.5 to 0.7). $TlSr_{2-x}Ti_xCaCu_2O_7$ (x = 0 to 0.6) formed mixed Tl1201 and Tl1212 phases and was superconducting for x=0.2 with $T_{c \text{ onset}}$ of 43 K and 66 K and $T_{c \text{ zero}}$ of 34 K. The lattice parameters calculated from XRD for both compositions did not show any systematic change with Ti substitution. The location of Ti for $Tl_{0.8}Pb_{0.2}Sr_2(Sr_{1-x}Ti_x)Cu_2O_7$ and $TlSr_{2-x}Ti_xCaCu_2O_7$ is complicated due to formation of mixed phases.

CHAPTER I

INTRODUCTION

The discovery of superconductivity at temperatures above 77 K is amongst one of the important scientific events of the past decade. The potential scientific and commercial importance of this discovery, largely underlie the degree of excitement and fervour of the field. Superconductors are elements, inter-metallic alloys, or compounds that will conduct electricity without resistance below a certain temperature. Superconductivity has been found in at least 26 metallic elements and in thousands of alloys and compounds.

The extremely high superconducting transition temperatures of the ceramic superconductors have received particular attention. In high-temperature superconductors, yttrium and barium, or lanthanum and strontium are sandwiched between layers of copper and oxygen atoms (Wu et. al., 1987). The ceramic superconductor $YBa_2Cu_3O_{7-\delta}$ (Y123) is an acronym for a well-known ceramic superconductor composed of Yttrium, Barium, Copper and Oxygen. This was the first high temperature ceramic superconductor discovered that has a transition temperature well above the boiling point of liquid nitrogen that is a commonly available coolant.

1