

Cawangan Perak Kampus Seri Iskandar

e-Proceeding V-GOGREEN2020327-30 VIRTUAL GO-GREEN: CONFERENCE & PUBLICATION

Organiser : Research, Industrial Linkages, Community & Alumni Network (PJIM&A)

Co-organiser : Faculty of Architecture, Planning and Surveying (FSPU) & Centre for Post Graduate Studies (CGS)

Publication Date : 22. February 2021

Virtual Go-Green Conference and Publication 2020 UNIVERSITI TEKNOLOGI MARA, PERAK BRANCH February 2021

Wan Nurul Fatihah Wan Ismail

Nazirul Mubin Mohd Noor

Noor Aileen Ibrahim

Noraini Johari

Jeyamahla Veeravagu

Hajah Norakmarwati Ishak

Sr Dr Anis Sazira Binti Bakri

Dr Izatul Farrita Mohd Kamar

Dr Kharizam Binti Ismail

Siti Hasniza Rosman

Dr Izatul Laili Jabar

Sr Nurul Fadzila Zahari

Sr Dr Irwan Mohammad Ali

Shazwan Mohamed Shaari

Ir Dr Amirul Bin Abd Rashid

Dr Anis Syazwani Binti Sukereman

Mohamad Haizam Mohamed Saraf

Sr Dr Muhammad Azwan Sulaiman

Assoc Prof Sr Dr Rohayu Ab Majid

Sr Dr Nor Nazihah Bt Chuweni

Sr Dr Alia Abdullah Saleh

Dr Nor Aini Salleh

Sr Nurul Sahida Fauzi

Sr Dr Natasha Khalil

Dr Ida Nianti Mohd Zin

Editors

Dr Junainah Binti Mohamad Nurulanis Ahmad @ Mohamed Jannatun Naemah Binti Ismam Najma Binti Azman

Chief Language Editor

Dr Hjh Shazila Abdullah

Language Editors

Dr Daljeet Singh Sedhu A/L Janah Singh Zarlina Mohd Zamari Mary Thomas Iza Faradiba Mohd Patel Farahidatul Akmar Awaludin Wan Faridatul Akma Wan Mohd Rashdi

Panel of Reviewers

Dr Asniza Hamimi Abdul Tharim Ar Iznnv Ismail Dr Azizah Md Aiis Ar Jamaludin Bin Hj Muhamad Ar Azman Bin Zainonabidin Sr Ts Dr Asmat Binti Ismail Dr Siti Norsazlina Haron Sr Dr Norazian Mohamad Yusuwan Dr Raziah Ahmad Dr Asmalia Che Ahmad Wan Norizan Wan Ismail Sr Dr Kartina Bt Alauddin Dr Norehan Norlida Bt Mohd Noor Assoc Prof Dr Siti Akhtar Mahayuddin Ts Siti Nur Aishah Mohd Noor Sr Dr Nor Suzila Lop Dr Hajah Norakmarwati Ishak Assoc Prof Gs TPr Dr Halmi Bin Zainol Dr Syed Ahmad Qusoiri Bin Syed Abdul Karim

Nur Idzhainee Hashim Sr Ts Dr Mohamad Ridzuan Bin Yahva Sr Gs Noraain Binti Mohamed Saraf Sr Dr Ani Saifuza Abd Shukor Ir Normadyzah Ahmad Sr Gs Dr Abdul Rauf Bin Abdul Rasam Norhayati Talib Sr Dr Raha Sulaiman Ts Dr Izham Abdul Ghani Dr Nur Huzeima Mohd Hussain Assof Prof Ts Norhafizah Abdul Rahman Dr Siti Rasidah Md Sakip Dr Muhamad Hilmi Mohamad @ Masri Dr Zakaria Hashim IDr Dr Nadiyanti Mat Nayan Sr Nurulanis Binti Ahmad @ Mohamed Gs Dr Nor Eeda Haji Ali Gs Dr Nor Hisham Bin Md Saman

Graphic Designer Farah Hanna Ahmad Fuad Mohamad Shahin Bin Shahdan

Main Committee

Virtual Go-Green Conference and Publication 2020

Advisor 1	: Prof Sr Dr Md Yusof Hamid, AMP
Advisor 2	: Assoc Prof Dr Nur Hisham Ibrahim
Chairman	: Sr Dr Asmalia Che Ahmad
Co-Chairman	: 1. Sr Dr Yuhainis Abdul Talib
	2. Sr Dr Haryati Mohd Isa
Treasurer	: Mohamad Haizam Mohamed Saraf
Secretary	: Noorliza Musa
Head of v-Conference	: Sr Dr Nor Suzila Lop
Head of e-Proceeding	: Dr Junainah Mohamad
Head of Scopus Indexed Journal	: Assoc Prof Gs Dr Mohd Fadzil Abdul Rashid
Planning Malaysia	
Journal (PMJ)	
Head of Scopus Indexed Journal	: Sr Dr Natasha Khalil
Malaysian Construction	
Research Journal (MCRJ)	
Head of Paper Reviewer	: Dr Asniza Hamimi Abdul Tharim

Committee Members

Virtual Go-Green Conference and Publication 2020

E-Proceeding Paper Reviewer

Noraini Md Zain Shafikah Saharuddin Nur Fatiha Mohamed Yusof Farrah Rina Mohd Roshdi

E-Proceeding Formatting

Nurulanis ahmad @ Mohamed Jannatun Naemah Binti Ismam Najma Binti Azman

E-Proceeding Language Reviewer

Dr Hjh Šhazila Abdullah Dr Daljeet Singh Sedhu A/L Janah Singh Zarlina Mohd Zamari Dr Mary Thomas Iza Faradiba Mohd Patel Farahidatul Akmar Awaludin Wan Faridatul Akma Wan Mohd Rashdi Jeyamahla Veeravagu Wan Nurul Fatihah Wan Ismail Nazirul Mubin Mohd Noor Noor Aileen Ibrahim Noraini Johari Dr Hajah Norakmarwati Ishak

Virtual Conference

Norazlin Mat Salleh Shahela Mamter Mohd Esham Mamat Noor Anisah Abdullah @ Dolah Mohamad Tajudin Saidin Fairiz Miza Yob Zain Mohd Firdaus Zainuddin Farah Hanna Ahmad Fuad Mohamad Shahin Shahdan Mohd Asrul Hassin Registration Auditor Auditor Certificate & Conference Kit Logistic Logistic Promotion & Publicity Promotion & Publicity Liason Officer

Organiser: Research, Industrial Linkage Community and Alumni Network Office (PJIM&A) Universiti Teknologi MARA, Perak Branch, Seri Iskandar. Malaysia

Co-Organiser: Faculty of Architecture, Planning and Surveying (FSPU) and, Centre for Post Graduate Studies (CGS) Universiti Teknologi MARA, Perak Branch, Seri Iskandar. Malaysia

Copyright © Research, Industrial Linkage Community and Alumni Network Office (PJIM&A), Faculty of Architecture, Planning and Surveying (FSPU) and, Centre for Post Graduate Studies (CGS). All rights reserved. No part of this publication may be produced, stored in a retrieval system, or transmitted in any form or by means electronics, mechanical, photocopying, recording or otherwise, without prior permission in writing from the publisher

A REVIEW OF DAYLIGHTING AND VISUAL COMFORT IN GREEN BUILDING RATING TOOLS

Fazidah Hanim Husain¹, Azhan Abdul Aziz², Mayamin Yuhaniz³, Salahuddin Abdul Hakeem Abas⁴ and Sabarinah Sheikh Ahmad⁵

¹⁻⁴Department of Architecture, Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, Perak Branch, Seri Iskandar Campus, 32610 Seri Iskandar, Perak, Malaysia ⁵Department of Architecture, Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia

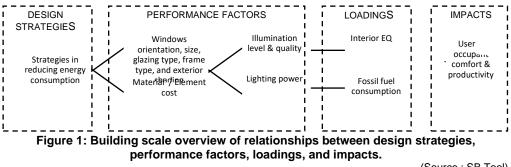
Abstract

One of the main components of interior space is lighting. Daylight offers a high-quality indoor environment that provides the required illumination for visual comfort. Well-designed architecture allows natural light to be transmitted, provides view, reduces heat, and eliminates glare in order to provide a work atmosphere that is conducive. Lack of understanding at the early stage of design and poor site consideration will produce high-energy buildings that encourage the usage of electrical lighting. A report from the Building Sector Energy Efficiency Project (BSEEP) stated that energy waste increased 50% because of lack of passive design knowledge. Post occupancy evaluation of GBI rated buildings show glare and employee discomfort occurred in office environment. This research is conducted to identify the score reading and weightage of daylighting and visual comfort in green building rating tools. The study provides an overview on daylighting-related measures in the certification of the commonly used rating tools worldwide such as LEED, BREEAM, CASBEE, SB TOOL, GREENMARK, NZ GREEN STAR, and GBI specifically in office buildings which were comparatively assessed and analysed. This comparison allows researcher to identify the score reading of the daylight performance and visual comfort that fall under the category of Energy and IEQ to highlight the weightage and importance of daylight and visual comfort from the perspective of green building. The analysis shows that the score readings between the rating tools on both categories vary and are not homogeneous, but are based according to the locality, climate, and the region.

Keywords: *daylighting, visual comfort, passive design strategy, rating tools, energy efficiency, office*

1.0 INTRODUCTION

Daylighting is an effective and efficient strategy in achieving visual comfort and energy efficiency. Harvesting natural daylight is the most effective method, since it reduces the energy usage. The quality of daylight provides good color rendering and the light source is almost equivalent to human visual responses. Daylight offers a sense of brightness and gives significant impacts on human's psychology (Li & Lam, 2001).


Global energy consumption in the world has been growing gradually in recent years and this growth appears to continue in the near future (IEA, 2016). It is well known that the building industry contributes about 40 per cent of total energy consumption in developing countries (Zuo & Zhao, 2014). As a result, increasing energy efficiency in buildings is a major concern (Boyano, Hernandez & Wolf, 2013) and several strategies have been studied and proposed to improve this aspect (Gori et al., 2016). Indeed, numerous countries have established energy assessment procedures to determine the energy efficiency of buildings (Dall'O et al., 2013). Evaluating building performance from a wider perspective including taking into account the environmental, social, and economic effects of buildings is critical, considering that encouraging energy efficiency is one of the most important issues for governments (Mattoni et al., 2018).

In this paper, the category used for the evaluation of daylighting and visual comfort were discussed in seven commonly used instruments (LEED, BREEAM, CASBEE, SB TOOL, GREENMARK, NZ GREEN STAR AND GBI). The study focused on differences in score reading that concern office buildings. This preference was decided based on the belief that office buildings are characterised by some common or similar features around the world. This will provide a solid basis for the comparative analysis and evaluation attempted in this paper. In the scope of study discussed in this research, the form and scope of standard used to determine daylight and visual comfort related parameters, the weights score applied, and references to relative standards were checked and evaluated in a comparative way.

2.0 LITERATURE REVIEW

2.1 The Concept of Daylighting and Visual Comfort in Green Building Rating Tools

In order to satisfy the requirements for holistic performance assessments, evaluation and ranking systems were developed. First of all, it is useful to recognise the significant impacts on human and natural environments, such as environmental, economic, and social impacts when figuring out the different factors involved in the construction of sustainable outcomes (SB Tool, 2016). Figure 1 demonstrates the theoretical structure that is followed in the process, such as the relationship between requirements for daylight and visual comfort, design strategies or project components, with the performance factors linked to loadings, which in turn are linked to impacts.

(Source : SB Tool)

Natural energy is used directly as energy without the use of any mechanical force, as in the use of daylight. Many buildings have natural lighting as their basic energy saving measures. The passive design approach such as the positions (orientations) of openings can make an efficient use of daylight. The assessment of lighting and illumination is carried out regarding the efficient utilization of natural light (daylight use), measuring against the glare of direct sunlight during the day (glare counter measures), the balance and level of brightness (illuminance), and the control of brightness and positions of lights.

2.2 Green Building Rating Tools

The rating tools presented in this paper (LEED, BREEAM, CASBEE, SB TOOL, GREENMARK, GREEN STAR and GBI) vary in their theory, procedure, and structure. Therefore, the presence of their main features is an inseparable part of the analysis of the criteria in the assessments they perform related to visual comfort. In Table 1, these characteristics are presented.

3.0 RESULT & DISCUSSION

3.1 The Category of Daylighting and Visual Comfort in International Green Building Rating Tools

Based on Table 2, the measures used to assess daylight and visual comfort in each of the tools were formulated in a different way, depending on the general evaluation context, purpose, and process of each rating tool. Table 2 shows two main categories in rating tools that are related to daylighting and visual comfort.

						U	<u> </u>	
No	System	Founding Years	Duration of Years	Total Number of Project Certified	Total Area Certified (Building)	Body	Administration Body	Certification Levels and Points
1	LEED (US)	2000	19	70,000	279 million m2	Non-profit	US Green Building Council (USGBC) and Green Building Certification Institute (GBCI)	Platinum: 80+ Gold: 60-79 Silver: 50-59 Certified: 40- 59
2	BREE AM (UK)	1990	29	8,000	40 million m2	Non-profit	BRE Trust	Outstanding: 85+ Excellent: 70-84 Very Good: 55-69 Good: 45-54 Pass: 30-44
3	CASB EE (Japa n)	2001	18	300 (update to 2016)	n/a	Governme nt Body	Japan Sustainable Building Consortium (JSBC)	Excellent (S) Very Good (A) Good (B+) Fairly Poor (B-) Poor (C)
4	SBTO OL	2007	12	n/a	n/a	Non-profit	International Initiative for a Sustainable Built Environment (ISBE)	Best Practice (4- 5) Good Practice (2- 3) Minimum Practice (0- 1) Negative (- 1)
5	GREE N MARK (Singa pore)	2005	14	2,002	n/a	Governme nt Body	Building and Construction Authority (BCA)	Platinum: 90-100 Gold Plus: 85-89 Gold: 75-84 Certified: 50- 74
6	NZ GREE N	2003	16	726	40 million m2	Non-profit	The Green Building Council of	6 Star: 75+ 5 Star: 60- 74

Table 1: The overview of well-known green building rating tools

No	System	Founding Years	Duration of Years	Total Number of Project Certified	Total Area Certified (Building)	Body	Administration Body	Certification Levels and Points
	STAR (New Zeala nd)						Australia (GBCA) - Green Star	4 Star: 45- 59
7	GBI (Mala ysia)	2008	11	300	14 million m2	Non-profit	Malaysia Institute of Architects (PAM) and the Association of Consulting Engineers Malaysia (ACEM)	Platinum: 86-100 Gold: 76-85 Silver: 66-75 Certified: 50- 65

(Source: LEED, BREEAM, CASBEE, SB TOOL, GREEN MARK, NZ GREEN STAR & GBI)

Daylighting and Visual Comfort criteria were structured under the environmental section of Indoor Environmental Quality, Indoor Environment, and Health and Wellbeing. Meanwhile, the External Light (Daylight), Renewable Energy and Energy Efficiency criteria were grouped under the theme of Energy, which applies to the subject of Energy and Atmosphere, Energy, Energy and Resource Consumption, and Energy Efficiency. Each rating tool carries different names but belongs to the same section and has similar definitions of Daylighting and Visual Comfort.

3.2 The Score Breakdown of the Green Building Rating Tools Categories

An additional analysis is displayed in Table 3; the rating tools were split into 12 fundamental categories that deal with the key aspects of green buildings. Those areas are the same for all other protocols and the breakdown of credits and points with the total score is shown. Each rating tool carries a different total score and the percentage of IEQ and Energy are shown in Figure 2.

Table 2: The category of daylighting and visual comfort in international green building
rating tools

No	LEED	BREEAM	CASBEE	SB TOOL	GREEN MARK	GREEN STAR	GBI
1		Manage ment	Quality of Service	Service Quality		Manage ment	
2	Indoor Environ mental Quality	Health and Wellbein g	Indoor Environ ment	Indoor Environme ntal Quality	Indoor Environ mental Quality	Indoor Environ mental Quality	Indoor Enviro nment al Qualit y
3	Energy and Atmosp here	Energy	Energy	Energy and Resource Consumpti on	Energy Efficienc y	Energy	Energ y Efficie ncy

No	LEED	BREEAM	CASBEE	SB TOOL	GREEN MARK	GREEN STAR	GBI
4	Locatio n and Transp ortation	Transpo rt				Transpo rt	
5	Water Efficien cy	Water			Water Efficienc y	Water	Water Efficie ncy
6	Materia I and Resour ces	Material s	Resourc e & Material			Material s	Materi al & Resou rces
7	Sustain able Sites	Land and Use Ecology	Outdoor Environ ment on Site	Site Regenerat ion and Developm ent	Environ mental Protectio n	Land Use and Ecology	Sustai nable Site Planni ng & Manag ement (SM)
8		Pollution				Emissio ns	
9		Waste		Social, Cultural and Perceptual Aspect			
10			Off-site Environ ment	Environme ntal Loadings			
11	Region al Priority						
12	Innovation	Innovati on		Cost and Economic s	Innovati on	Other Green Features and Innovati ons	Innova tion

(Source : Researcher Analysis)

Table 3 shows the score breakdown of the green building rating tools' categories and highlights two main categories of the study which are the Indoor Environmental Quality (IEQ) and Energy that represent Daylighting and Visual Comfort criteria and Energy Efficiency. From the score breakdown, we can see that the score values in LEED, Green Mark and GBI have a significant difference in IEQ and Energy Category. However, the score values in IEQ and E nergy category of BREEAM, SB Tool, and Green Star have only a slight difference. Meanwhile, CASBEE presents the same score reading of IEQ and Energy which is 2.

According to the study done by Giarmaa, Tsikaloudaki, and Aravantinos (2017) the points and credit for daylighting and visual comfort criteria differ between rating tools, including the parameters measured. BREEAM, LEED and CASBEE tends to provide holistic explanation and approach on the daylighting performance and IEQ evaluation breakdown since the establishments of the rating tools were more than fifteen years ago. Besides, the criteria index provided by each rating tool has a significant influence based on locality and climate. Tropical regions like Singapore and Malaysia have an abundance of daylight. Therefore, the daylight and visual comfort criteria index for IEQ is lower to be compared with other rating tools of other regions. The criteria index in rating tools for Temperate and Sub-Tropical regions tends to have higher points in IEQ because the climate's region has four seasons climate and minimal sunlight. The rating tools of tropical regions provide higher reading scores under the Energy category to encourage building designers to produce climate responsive buildings that reduce energy usage.

NO	CATEGORY	LEED	BREEA M	CASBE	SB	GREEN MARK	GREEN STAR	GBI
1	Management	6	21	1. 5	20	0	9	0
2	Indoor Environmental Quality (IEQ)	9	23	2	18	8	16	21
3	Energy	25	27	2	10	67	22	35
4	Transportation	5	11			2	8	0
5	Water	9	10			3	8	10
6	Materials	10	12	1. 5		8	16	11
7	Land Use and Ecology	6	10	1. 5	22	7	5	16
8	Pollution	4	12			2	10	0
9	Community	17	1	1. 5	10	0	0	0
10	Climate Change Adaptation	2	1		19	0	0	0
11	Regional Priority	3	0			0	0	0
12	Innovation	4	6		4	3	7	7
	Total Score	10 0	13 4	10	10 3	100	100	10 0

Table 3. The score breakdown of the Green Building Rating Tools categories

(Source: Researcher Analysis)

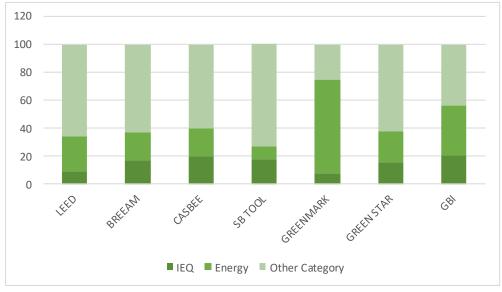


Figure 2. The percentage of IEQ and Energy category from the total score. (Source: Researcher Analysis)

4.0 CONCLUSION

This paper has described the standards related to daylight and visual comfort in seven major green building rating tools. Details on their inclusion in the structure of the instruments, their score contribution to the category involved, and the final score of the protocol were presented, as well as the criteria used to determine these guidelines. Focus was imposed on daylighting, for which the relevant data were provided in a more detailed and analytical manner. The analysis presented in this paper shows that the score readings between the rating tools vary in both categories and are not homogeneous and are based on locality, climate and location. The study, which describes the methods and techniques was analysed, making it easier to distinguish discrepancies and similarities between them, both at the level of their general context and with regard to the particular elements and criteria associated with the evaluation process.

REFERENCES

- Boyano, A., Hernandez, P., & Wolf, O. (2013). Energy demands and potential savings in European office buildings: Case studies based on EnergyPlus simulations. Energy and Buildings, 65, 19-28.
- BREEAM International New Construction, Technical Manual, Version: SD233, Issue 1. 0. Available online; 2016. (http://www.breeam.com)
- CASBEE. Available online: (http://www.ibec.or.jp/CASBEE/english/overviewE.html)
- Dall'O, G., Belli, V., Brolis, M., Mozzi, I., & Fasano, M. (2013). Nearly zero-energy buildings of the Lombardy region (Italy), a case study of high-energy performance buildings. Energies, 6(7), 3506-3527.
- Giarma, C., Tsikaloudaki, K., & Aravantinos, D. (2017). Daylighting and visual comfort in buildings' environmental performance assessment tools: a critical review. Procedia Environmental Sciences, 38, 522-529.
- Gori, P., Guattari, C., Evangelisti, L., & Asdrubali, F. (2016). Design criteria for improving insulation effectiveness of multilayer walls. International Journal of Heat and Mass Transfer, 103, 349-359.
- Green Building Index Sdn. Bhd. (2011). GBI Assessment Criteria for Non-Residential Existing Building (NREB), (January), 1–17
- Green Mark. Available online: (https://www.bca.gov.sg/GreenMark/green_mark_criteria.html)
- Green Star. Rating System. Available online: (https://www.gbca.org.au/green-star/rating-tools/) International Energy Agency, World energy outlook 2016, Paris, France: International Energy
- Agency; 2016. https://www.iea.org/reports/world-energy-outlook-2016
- Lazrak, F., Rietveld, P. and Rouwendal, J. (2014) The Market Value of Cultural Heritage in Urban Areas: An Application of Spatial Hedonic Pricing. Journal of Geographical System, 16(1):89-114
- Li, Danny HW, and Joseph C. Lam. "Evaluation of lighting performance in office buildings with daylighting controls." Energy and buildings 33.8 (2001): 793-803.
- Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P., & Asdrubali, F. (2018). Critical review and methodological approach to evaluate the differences among international green building rating tools. Renewable and Sustainable Energy Reviews, 82, 950-960.
- SBTool_2015_Generic_Max_Dsn_available at http://iisbe.org/node/140
- U.S. Green Building Council. Available online: (www.usgbc.org)
- Zuo, J., & Zhao, Z. Y. (2014). Green building research–current status and future agenda: A review. Renewable and sustainable energy reviews, 30, 271-281.

Pejabat Perpustakaan Librarian Office

Universiti Teknologi MARA Cawangan Perak Kampus Seri Iskandar 32610 Bandar Baru Seri Iskandar, Perak Darul Ridzuan, MALAYSIA Tel: (+605) 374 2093/2453 Faks: (+605) 374 2299

Prof. Madya Dr. Nur Hisham Ibrahim Rektor Universiti Teknologi MARA Cawangan Perak

Tuan,

PERMOHONAN KELULUSAN MEMUAT NAIK PENERBITAN UITM CAWANGAN PERAK MELALUI REPOSITORI INSTITUSI UITM (IR)

Perkara di atas adalah dirujuk.

2. Adalah dimaklumkan bahawa pihak kami ingin memohon kelulusan tuan untuk mengimbas (*digitize*) dan memuat naik semua jenis penerbitan di bawah UiTM Cawangan Perak melalui Repositori Institusi UiTM, PTAR.

3. Tujuan permohonan ini adalah bagi membolehkan akses yang lebih meluas oleh pengguna perpustakaan terhadap semua maklumat yang terkandung di dalam penerbitan melalui laman Web PTAR UiTM Cawangan Perak.

Kelulusan daripada pihak tuan dalam perkara ini amat dihargai.

Sekian, terima kasih.

"BERKHIDMAT UNTUK NEGARA"

Saya yang menjalankan amanah,

Setuju.

PROF. MADYA DR. NUR HISHAM IBRAHIM REKTOR UNIVERSITI TEKNOLOGI MARA CAWANGAN PERAK KAMPUS SERI ISKANDAR

SITI BASRIYAH SHAIK BAHARUDIN Timbalah Ketua Pustakawan

nar