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Abstract: In the  present work a  sub-class , 1 1( , , ,b
p nR a c S T ) of ( )A pf n∈   is defined by using a 

linear operator 1 1( , )pL a c and obtained sufficient condition in terms of the coefficients of ( )A pf n∈  
to be a member of this class. Furthermore, the Fekete-Szego problem is completely solved and found 
that the functional|𝑎𝑎𝑝𝑝+3𝑎𝑎𝑝𝑝+1 − 𝑎𝑎𝑝𝑝+22 |  is bounded. Finally, the sharpness of the associated estimates 
is also studied. 
 
Keywords: Complex order, Hadamard product, Inclusion relationships, Neighbourhood, 
Subordination. 

 

1   Introduction 
 
Let  A ( )p n   be the class of analytic and p-valent function defined in a unit disk { :| | 1}U z z= ∈ <  of 
the form: 
 

( ) ( , )p p m
p m

m n
f z z a z p n N

∞
+

+
=

= + ∈∑                                                                                                (1) 

 
A A,p are conveniently used for 1n =  and 1, 1n p= = , respectively. For two functions f , g are 
analytic in U ,  the function f  is called to be subordinate to the function g , written ( ) ( )f z g z ,if 
there exists a functionψ  analytic in 𝑈𝑈 with | ( ) | 1, ,z z Uψ < ∈  and (0) 0ψ = ,  such that ( ) ( ( ))f z g zψ=  
for all z U∈ .  In particular, if g  is univalent in U  then the following equivalent relationship holds true 
(cf., e.g.,[25]; see also [26]): 
 

( ) ( ) (0) (0) and ( ) ( )f z g z f g f g⇔ = ⊂ U U  
 
Furthermore, consider the functions 𝑓𝑓,𝑔𝑔  are analytic in U ,𝑓𝑓(𝑧𝑧) is given by equation (1) and  
 

( ) ( , )p p m
p m

m n
g z z b z p n N

∞
+

+
=

= + ∈∑ . 

 
The convolution product of above functions is defined by 
 

( )( ) ( )p p m
p m p m

m n
f g z z a b z z

∞
+

+ +
=

= + ∈∑ Uå . 

Let *
, ( , )p n d ηS and , ( , )p n d ηC re the respective p-valently starlike and convex functions of complex order 

𝑑𝑑 and type η  involving 𝑓𝑓 𝑜𝑜𝑜𝑜A ( )p n such that 𝑓𝑓 satisfies,  
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*1 ( )Re ( {0},0 ; )
( )

zf zp p d C C p z
d f z

η η
′   + − > ∈ = ≤ < ∈  

   
U‚                                                     (2) 

 
and 

 

*1 ( )Re 1 ( {0},0 ; )
( )

zf zp p d C C p z
d f z

η η
′′

′

   + + − > ∈ = ≤ < ∈  
   

U‚                                               (3) 

respectively. From (1) and (3), we get that  
 
𝑓𝑓𝑓𝑓 𝐶𝐶𝑝𝑝,𝑛𝑛(𝑑𝑑, 𝜂𝜂) ⟺ 𝑧𝑧𝑓𝑓′(𝑧𝑧)

𝑝𝑝
𝜖𝜖𝑆𝑆𝑝𝑝,𝑛𝑛

∗ (𝑑𝑑, 𝜂𝜂). 
 

*
,1, ( , )p nFor p n the classes d η= = S and , ( , )p nC d η reduces to *( , )d ηS and ( , )C d η the corresponding 

starlike and convex function of complex order 𝑑𝑑 and type *,( ;0 )d C pη η∈ ≤ < , which were studied by 
Frasin [2]. 
 
In *( , )d ηS and ( , )C d η if we take 𝜂𝜂 = 0then the classes are represented by *( )dS and ( )C d ,which are 
starlike and convex functions of order d, respectively, and are studied by Nasr and Aouf [15] and 
Wiatrowski [20] (also, see [18] and [10]).We denote * *

,1(1, ) ( )p pη η=S S and  ,1(1, ) ( )p pC Cη η= ,as the 
respective classes of p-valentlystarlike and convex functions of order 

* *
1 1(0 ) . , ( ) ( ) ( ) ( )p in Also and C Cη η η η η η≤ < = =U� S S , are starlike and convex functions of 

order (0 )pη η≤ < in U . Let , ( , )p nR d η be the family of functions in A ( )p n satisfying the condition, 
 

*
1

1 ( )Re ( {0},0 ; )p

f zp p d C C p z
d z

η η
′

−

   + − > ∈ = ≤ < ∈  
   

U‚ . 

 
Also, , (1, )p nR η   is the subclass of p-valently close-to-convex functions of order (0 )pη η≤ < , in the 

unit disk U . 
 
Let pθ  be the incomplete beta function defined by 
 

1
1 1

1

( )( , ; ) ( ),
( )

mp p m
p

m n m

aa c z z z z
c

θ
∞

+

=
= + ∈∑ U                                                                                         (4) 

 
where 1 1 0 0, , {0, 1, 2, })a C c C Z− −∈ ∈ = − − …‚ Z and ( )mx denotes the Pochhammer symbol (or the 
shifted factorial) defined in terms of the Gamma function by 
 

{ *1, ( 0, {0})( ) ( 1) ( 1), ( , ).m
m x C Cx x x x m m N x C
= ∈ == + + − ∈ ∈

‚  

 
Using  pθ  given by (4) and the convolution product, Saitoh [11] considered a linear operator 
𝐿𝐿𝑝𝑝(𝑎𝑎1, 𝑐𝑐1):𝐴𝐴𝑝𝑝(𝑛𝑛) → 𝐴𝐴𝑝𝑝(𝑛𝑛) 
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given by 
 

1 1 1 1( , ) ( ) ( , ; ) ( ) ( ). Up pL a c f z a c z f z zθ= ∈å                                                                                   (5) 
 
If f is given by (1), then, from (5) it gets that 
 

1
1 1

1

( )( , ) ( . ) U( )
( )

mp p m
p p m

m n m

aL a c f z z a z z
c

∞
+

+
=

= + ∈∑                              (6) 

The investigation of certain sub classes of starlike, convex and prestarlike hypergeometric functions 
was first designed by Carlsonand Shaffer [3]. We also note that for A , pf ∈  
 
(i) 1 1( , ) ( ) ( )=pL a a f z f z  

 
(ii) 2( 1, ) ( ) ( ) 2 ( ) / ( 1);′′ ′+ = + +pL p p f z z f z zf z p p  
 
(iii) ( 2, ) ( ) ( ) / ;′+ =pL p p f z zf z p  
 
(iv) 1( ,1) ( ) ( ) ( , )t p

pL t p f z D f z t t p+ −+ = ∈ > − , the operator studied by R.M. Goel and N.S. Sohi 
[23]. In the case p=1, 𝐷𝐷𝑡𝑡𝑓𝑓 is the familiar St. Ruscheweyh derivative [24] of 𝑓𝑓 ∈ 𝐴𝐴. 

 
(v) ,( ,1) ( ) ( ) ( ),p

pL p f z D f z pττ τ+ = > − the extended linear derivative operator of St. Ruscheweyh 
type studied by R.K. Raina and H.M.  Srivastava [22]. In particular, when 𝜏𝜏 = 𝑚𝑚, we get operator 

1 ( ) ( , ),m pD f z m m p+ − ∈ > − studied by R.M. Goel and N.S. Sohi [23]. 
 
(vi) ,( 1, ) ( ) ( ) ( , ),p t pL p t p f z f z t t p+ + = ∈ > −I the extended Noor integral operator introduced by 

L. Liu and K.I. Noor [13]. 
 
(vii) ( , )( 1, 1 ) ( ) ( ) ( 1),p

p zL p p f z f z pνν ν+ + − = Ω −∞ < < + the extended fractional differintegral 
operator first designed by J. Patel and A.K. Mishra,[12]. 

 
Note that 
 

2
0, 1, 2,( ) ( )( ) ( ), ( ) and ( ) ( 2; ).

( 1)
Up p p

z z z
zf z z f zf z f z f z f z p z

p p p

′ ′′

Ω = Ω = Ω = ≥ ∈
−

 

Now, we use the operator 1 1( , )pL a c and introduce a new subclass of p-valent analytic functions in the 

unit disk U . 
 
Definition 
 
A class , 1 1( , , , )d

p nR a c S T is the subclass of analytic p-valent functions consisting f of the form equation 
(1) and satisfies the subordination condition.  
 

( )1 1
1

( , ) ( )1 11
1

p
p

L a c f z Szp
d z Tz

′

−

  + + − 
+  

                                                                                                  (7)  

where *1 1, , .T S p N d C− ≤ < ≤ ∈ ∈ 𝑎𝑎𝑎𝑎𝑎𝑎 z∈U . Equivalently, we say ( )pf A n∈ is a member of 

, 1 1( , , , )d
p nR a c S T if 
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{ }
1 1

1 1

( ( , ) ) ( )
1 ( )

( ) ( ( , ) ) ( ) )
 U

p
p

p p
p

z L a c f z pz
z

d S T z T z L a c f z pz

′

′

−
< ∈

− − −
                                                                   (8) 

 
For 𝑛𝑛 = 1, we denote the class by 1 1( , , , )d

pR a c S T  It may be noted that by suitably choosing the 

parameters involved in definition (1), the class , 1 1( , , , )d
p nR a c ν η extends several subclasses of p-valent 

holomorphic functions in𝑈𝑈.  
 
● The class 1 1( , , , )d

pR a c S T generalizes many other sub-classes, for example, by considering 

1, cos , 1 2 / , 1in d pe S p Tφ φ η−= = = − = −  in definition (1.1), then, we get 
 

● cos
1 1 1 1

2, ,1 , 1 ( , , , )ipe
p pR a c R a c

p
φ φ η φ η

−  
− − = 

 
 

 

● 1 1
1

( ( , ) ) ( )
: Re cos , A pi

p p

L a c f z
f e

z
φ η φ

′

−

    = ∈ >         
 

 
Where 0 , | / 2p and zη φ π≤ < < ∈U  Taking different restrictions on parameters, we get many 
subclasses of 1 1( , , , )pR a c φ η as follows: 
 
(i) For 𝑎𝑎1 = 𝑐𝑐1in the above subclass 1 1( , , , )pR a c φ η , we get 

1 1 1
( )( , , , ) ( , ) : Re cos . A i

p p p p
f zR a c R f e
z

φφ η φ η η φ
′

−

    = = ∈ >   
    

 

The subclass 𝑅𝑅𝑝𝑝(0,𝜂𝜂) is recently studied by Krishna and Shalini [30] and found the third Hankel 
determinant. 

 
(ii) For 1 11, 1a p c p ν= + = + − in the above subclass 1 1( , , , )pR a c φ η ,, we obtained  
 

cos
,

21, 1 ,1 , 1 ( , )ipe
p pR p p R

p
φ φ

ν
ην φ η

−  
+ + − − − = 

   
,

1 1
1

( ( , ) ) ( ) cos
p

zi
p

a c f ze
z

ν
φ η φ

′

−

   Ω = >   
     . 

Where 0 , 1, | | / 2p p and zη ν φ π≤ < − ∞ < < + < ∈U . 
 
 

(iii) ( )
2 cos (1 )

1
, ,1, ,1,, (0 ,0 1,| | / 2)

ipe
p

p pR p p R p

φ αφ

φβ
α ββ α β φ π

− −

+ + − = ≤ ≤ ≤ ≤ ≤  

                  

1

1 1

( ) ( )

: ; .
( ) ( ) 2

U
( )

A

p

p
p i p

f z zf z pz
p pf z

f z zf z pz p e z cos
p p

φ
β

α φ

′ ′′
−

′ ′′
− − −

 
+ −  = ∈ < ∈ 

 + − + −
  
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 Further, taking  , 0S p Tη= − = in definition (1), we get the following subclass , 1 1( , , )d
p nR a c η of 

A ( )p n .  
 
● A function 𝑓𝑓 ∈ A ( )p n    is said to be in the class , 1 1( , , )d

p nR a c η ,if it satisfies the following inequality: 
 

● 
( )1 1 *

1

( , ) ( )1 ( , 0 ; ) Up
p

L a c f z
p p d C p z

d z
η η

′

−

  − < − ∈ ≤ < ∈ 
  

                                                  (9) 

 
• ( )*

, ,( 1, 1 , ) ( , ) , ,d d
p n p nR p p R d C pν η ν η ν+ + − = ∈ −∞ < < special cases 

of the parameters 𝑝𝑝, 𝜈𝜈and 𝜂𝜂in the class 𝑅𝑅𝑝𝑝𝑑𝑑(𝜈𝜈, 𝜂𝜂) yield the following subclasses of 𝐴𝐴𝑝𝑝  .  
 

(i) , ,(0, ) ( )d d
p n p nR Rη η=

1
1 ( ): ,0 ; . A  Up p

f zf p p p z
d z

η η
′

−

   = ∈ − < − ≤ < ∈  
   

 

(ii) , ,(1, ) ( )d d
p n p nR η η= P

1 2
1 ( ) ( ): (1 (1 )) , 0 ; . A  Up p p

f z f zf p p p p z
d pz pz

η η
′ ′′

− −

   = ∈ + − + − < − ≤ < ∈  
   

 

(iii) 1, (1,1 ) ( )d d
n nR Rβ β− = ( )1: ( ) ( ) 1 ,0 1; . A  Upf f z zf z z

d
β β′ ′′ 

= ∈ + − < < ≤ ∈ 
 

 

 
Let 𝑃𝑃 denote theclass of analytic functions 𝜃𝜃normalized by  
 

2
1 2( ) 1 ( ), Uz p z p z zθ = + + + ∈                                                                                                    (10) 

 
Re{ ( )} 0such that z inθ > U . 

 
Noonan and Thomas [14] defined the 𝑞𝑞 −th Hankel determinant of a complex sequence 1 2, , ,n n na a a+ +   
defined by 
 

1 1

1 2

1 2 2

( ) ( , {1})

n n n q

n n n q
q

n q n q n q

a a a
a a a

H n n N q N

a a a

+ + −

+ + +

+ − + + −

= ∈ ∈





   



‚  

 
In a particular case, for 2, 1, _1 1 2, 2.q n a and q n= = = = =   the Hankel determinant simplifies to 
 

2 2
2 3 2 2 2 4 3(1) | | and (2) | |,H a a H a a a= − = −  

 
respectively. We refer to 𝐻𝐻2(2)as the second Hankel determinant. Also, recall here that, if 
 

  
2

( ) ( ), Um
k

m
f z z a z z

∞

=
= + ∈∑                                                                                                           (11) 

 
is regular in a unit disc 𝑈𝑈, then the inequality 2

2 3 2(1) | | 1H a a= − ≤  holds true (see [18]). For a class 𝐹𝐹 of 
holomorphic functions of the form equation (7) the classical theorem of Fekete-szego considered to be 
the Hankel determinant for  2 (1)H  with well-known result for the estimation of 2

3 2| |a aµ− , when µ is 
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real or complex.. The problem arising out of the co-efficient  2 (1)H  for the familiar class of univalent 
mapping such as starlike functions, convex functions and close-to-convex functions were settled 
thoroughly by different researchers (see [16],[1],[9],[28],[29]). Tang et al. [31] defined a new subclass 
of analytic function and then derive the fourth Hankel determinant bound for this class. 
 
In the ongoing presentation, sharp upper bound of Fekete-Szego functional and the second Hankel 
determinant for functions belonging to the subclass R , 1 1( , , , )d

p n a c S T is determined by following a 
technique devised by Libera and Zlotkiewicz ([17],[21]).  Relevant connections of the results obtained 
here with some earlier known works are also pointed out. To establish our results, we use the following 
lemma. 
 

2. Preliminary Lemmas 

To establish our main results, we shall need the following lemmas. The first lemma is the well-known 
Caratheoradory′s lemmaa (see also [5, corollary 2.3.]): 

Lemma 2.1.[4]  If P∈P and given by (10), then | | 2kp ≤  for all 1k ≥  , and the result is best possible 

for the function *
1( ) , | | 1
1

zP z
z

ρ ρ
ρ

+
= =

−
 . 

The next lemma gives us a majorant for the coefficients of the functions of class 𝑃𝑃, and more details 
may be found in [27, Lemma 1]: 
 
Lemma 2.2. [21] Let the function 𝑃𝑃 is given by (10) be a member of the class P . Then,  
 

{ }2
2 1 2max 1;| 2 1| , wherep p Cν ν ν− ≤ − ∈  

 
The result is sharp for the function given by 

2 2
*

*2 2

1 1( ) and ( ) , | | 1
1 1

z zP z P z
z z

ρ ρ ρ
ρ ρ

+ +
= = =

− −
 

 
Lemma 2.3.[21] Let the function 𝑃𝑃 is given by (10) be a memberof the class 𝑃𝑃. Then,  

( )2 2
2 1 1

1 4
2

p p p x = + −  , 

and 

( ) ( ) ( )3 2 2 2 2 2
3 1 1 1 1 1 1

1 2 4 4 2 4 (1 | | ) ,
4
 = + − − − + − − p p p p x p p x p x z  

 
for some complex numbers 𝑥𝑥, 𝑧𝑧satisfying | | 1x ≤ and | | 1z ≤ . 
Other details regarding the above lemma may be found in   the relations (3.9) and (3.10) mentioned in 
[21]. 
 
3 Main Results  
 
Unless otherwise mentioned, we assume throughout the sequel that,  
 

*
1 1, , 0, 0, 1 1,d C p N a c T S z∈ ∈ > > − ≤ < ≤ ∈U . 

 
And the powers appearing in different expression are known as principle values. We derive a sufficient 
condition for a function  A pf ∈  to be in the class , 1 1( , , , )d

p nR a c S T . 
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Theorem 3.1.    If a functional f given by (1) satisfies 
 

1

1

( ) | | ( )| | ( )
( ) (1 | |)

m
p m

m n m

a d S Ta p m
c T

∞

+
=

−
+ ≤∑

+
                                                                                                 (12) 

 
then , 1 1( , , , )d

p nf R a c S T∈  
 
Proof.  To prove that 𝑓𝑓 given by (1) is a member of , 1 1( , , , )d

p nR a c S T it needs to satisfy (8). 
For |𝑧𝑧| = 1 , we have  

{ }
1 1

1 1

( ( , ) ) ( )
( ) ( ( , ) ) ( ) )

p
p

p p
p

z L a c f z pz
d S T z T z L a c f z pz

′

′

−

− − −
 

1

1

1

1

( ) ( )
( )

( )( ) | | ( )
( )

m m
p m

m n m

m m
p m

m n m

a a p m z
c

ad S T T a p m z
c

∞

+
=

∞

+
=

+∑
=

− − +∑

 

1

1

1

1

( ) | | ( )
( ) ( ),( )| | ( ) | | | | ( )

( )

 U

m m
p m

m n m

m m
p m

m n m

a a p m z
c zad S T T a p m z

c

∞

+
=

∞

+
=

+∑
≤ ∈

− − +∑
 

 
The last expression is needed to be bounded above by 1, which requires 

1

1

( ) | | ( )| | ( ) .
( ) (1 | |)

m
p m

m n m

a d S Ta p m
c T

∞

+
=

−
+ ≤∑

+
 

By the claim of maximum modulus theorem, (8) is justified for z∈U   and the proof of Theorem 3.1 is 
completed. 

Corollary 3.1. For , | | , 0 ,
2

A pf pπφ η∈ < ≤ <  

1

1 1

( ) | | ( ) ( )cos ,
( )

m
p m

m m

a a p m p
c

η φ
∞

+
=

+ ≤ −∑                              

is the sufficient condition to be member of  1 1( , , , ).pR a cφ η   

Theorem 3.2.  If the function f , given by (1) belongs to the family , 1 1( , , , )d
p nR a c S T , then  

1

1

| | ( )( )| | ( ).
( )( )

m
p m

m

d S T ca m n
p m a+

−
≤ ≥ ∈

+
                                                                                               (13) 

The estimate (13)is sharp. 

Proof.  Since , 1 1( , , , ),d
p nf R a c S T∈  we have 

1 1( ( , ) ) ( ) ( ) ( ) ( . U),
1 ( )

p
p

p

z a c f z pz d S T z z
z T z

ω
ω

′ − −
= ∈

+
L

                                                                         (14) 

Where 2
1 2( )z w z w zω = + + is analytic in 𝑈𝑈 satisfying the condition | ( ) | | |z zω ≤  for  Uz∈ . 
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In (14) we replace the series from of f  and ω  after doing some simplification we reach at 

1 1

11 1

( ) ( )( ) ( ) ( ) ( ).
( )

 U
( )

m mm m m
p m p m m

m n m n mm m

a aa m p z d S T T a m p z w z z
c c

∞ ∞ ∞

+ +
= = =

 
+ = − − + ∈∑ ∑ ∑ 

 
              (15) 

By simplifying the coefficient of both sides of (15) we get 𝑎𝑎𝑝𝑝+𝑚𝑚 depend on  

( 1) 1, , , , .p n p n p ma a a m n N+ + + + − ≥ ∈  

Hence, for m n≥  , it follows from (15) that, 

11 1

11 1

( ) ( )( ) ( ) ( ) ( ),
( ) ( )

t tm mm m m
p m m p m

m n m t m nm m

a am p a z d z d S T T m p a z z
c c

ω
∞ −

+ +
= = + =

 
+ + = − − +∑ ∑ ∑ 

 
 

Where the series 
1

m
m

m t
d z

∞

= +
∑   converges in   U. .Since | ( ) | 1zω < |  for  Uz∈ , we get  

11 1

11 1

( ) ( )( ) ( ) ( ) .
( ) ( )

t tm mm m m
p m m p m

m n m t m nm m

a am p a z d z d S T T m p a z
c c

∞ −

+ +
= = + =

 
+ + ≤ − − +∑ ∑ ∑ 

 
                            (16) 

Writing ( 1),iz re rφ= <  squaring both sides of (16) and then integrating, we obtain 

2 211 12 2 2 2 2 2 2 2 2 2 2
2 211 1

( ) ( )( ) | | | | | | ( ) | | ( ) | | .
( ) ( )

t tm mm m m
p m m p m

m n m t m nm m

a am p a r d r d S T T m p a r
c c

∞ −

+ +
= = + =

+ + ≤ − + +∑ ∑ ∑  

Having 1r −→  in the above discrimination, we obtain  

2 211 12 2 2 2 2 2 2 2 2
2 211 1

( ) ( )( ) | | | | ( ) (1 | | ) ( ) | | | | ( ) ,
( ) ( )

tt m
p t p m

mt m

a at p a d S T T m p a d S T
c c

−

+ +
=

+ ≤ − − − + ≤ −∑  

Where we have used the fact that | | 1.T ≤  Then the result will be  

1

1

| | ( )( )| | ( ).
( )( )

t
p t

t

d S T ca t n N
t p a+

−
≤ ≥ ∈

+
                                                                                                 (17) 

It is easily seen that the estimate (17) is sharp for the functions 

1 1
( ) { ( ) ( )}( ) ( , ; ) ( ; ).

1
U

( (
 

) )

m
p

m p m
m p T m p d S T zf z c a z z m N z

m p Tz
θ

 + + + + −
= ∈ ∈ + + 

å  

From the above theorem 3.2, we can further draw different conclusions in the form of following 
corollaries. 

Corollary 3.2. 

, 1 1 , 1 1( 1, , , ) ( , , , )+ ⊂d d
p n p nR a c S T R a c S T  

and                           

, 1 1 , 1 1( , , , ) ( , 1, , ).d d
p n p nR a c S T R a c S T⊂ +  
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Letting , 1 2 / , 1id pe S p Tφ η−= = − = −  in Theorem 3.2, we get  

Corollary 3.3 If the function A pf ∈   is in the class 1 1( , , , )pR a c φ η , then  

 
1

1

2 (1 )( )
| | ( ).

( )( )

m

p m
m

p c
pa m n N

p m a

η

+

−
≤ ≥ ∈

+
 

Remark 3.1. 

(i) Upon taking 1 11, 1andd p a c= = = in the Corollary 3.3, the inequality coincides with the Theorem 
-3.5 of [8], in addition with the above restrictions if we take 0,η =   then, the result will agree with 
theorem -5 of [19] with 0α = . 

(ii) Choosing 1 11, 1andd p a c= = =  in Theorem 3.2, we get the same result as in theorem -2.1 of [6] 
with 1and 0.τ γ= =  
 

4 Hankel Determinant 

In this section, we solved the Fekete-Szeg𝑜𝑜 ̈ problem and determine the sharp upper bound to the second 
Hankel determinant for the family 1 1( , , , )d

pR a c S T We first prove the following theorem. 

Theorem 4.1.  If the function A , pf ∈  from the family, 1 1( , , , )d
pR a c S T then for any  Cν ∈  

1 2 1 12
2 1 2

1 2 1 1

| | ( ) ( ) ( )( 2) ( )( 1)| | max 1, .
( 2) ( ) ( 1) ( 1)p p

d S T c d S T p c aa a T
p a p a c

νν+ +
 − − + + − ≤ + 

+ + +  
                                    (18) 

The estimate (18) is sharp. 
 
Proof. Since 1 1( , , , ),d

pf R a c S T∈  we can find θ ∈P  of the from (4) such that  
 

 1 1
1

( ( , ) ) ( ) ( )( ( ) 1) ( ).
(1 ) (1 ) )

 
(

Up
p

a c f z d S T zp z
z T T z

θ
θ

′

−

− −
− = ∈

− + +
L

                                                                       (19) 

 
Writing the series expansion of both sides, we obtain  

1

1 1 1

( )
( ) 2 (1 ) ( ) .

( )
p m m m m

p m m m
m m mp m

a
p m a z T q z d S T q z

c
∞ ∞ ∞+

+
= = =+

  + + + = −∑ ∑ ∑     
                                              (20) 

Equating coefficient of 2,z z   and 3 ,z  we get  

1 1
1

1

( ) ,
2( 1)p

c d S T qa
a p+

−
=

+
                                              (21) 

1 2 2
2 2 1

1 2

( ) ( ) 1 ,
( ) 2( 2) 2p
c d S T Ta q q
a p+

 − + = −  +   
                                            (22) 

and       

2
1 3 3

3 3 1 2 1
1 3

( ) ( ) 1 1 .
( ) 2( 3) 2 2p
c d S T T Ta q q q q
a p+

 − + +    = − +    +      
                                                      (23) 
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We have 1 2 1 12 2
2 1 2 12

1 2 1 1

( ) ( ) 1 ( )( 2) ( 1) .
2( 2) ( ) 2 2( 1) ( 1)p p
d S T c T d S T p c aa a q q

p a p a c
νν+ +

  − + − + + − = − +  + + +   
 

This expansion gives 1 1
2

1 1

1 ( )( 2) ( 1)
2 2( 1) ( 1)
T d S T p c a

p a c
νγ

 + − + +
= + + + 

and consequently using Lemma 2.2  

We get      1 1
2

1 1

( )( 2) ( 1)2 1 ,
( 1) ( 1)

d S T p c aT
p a c

νγ − + +
− = +

+ +
  

This resulted the needed estimation (4.1). Sharpness of this estimation can easily be verified by taking 
the function f  , defined in 𝑈𝑈 by  

( )

2

1 1
1 1 2 2

1 1

1 1
1 1 2

1 1

( )1
2 ( )( 2)( 1)( , ; ) , if 1

1 ( 1) ( 1)

( )
( 2) ( 1) ( ) ( )( 2)( 1)( , ; ) , if 1.

( 2) ( 1) ( 1) ( 1)

p
p

p
p

S TT d z
p d S T p a cc a z z T

Tz p a c

f z
p T p d S T z d S t p a cc a z z T

p T p z p a c

θ ν

θ ν

   −
+ +  + − + +   + ≤ 

+ + + 
  

=
 + + + + − − + +  + > 

+ + + + +  

å

å














 

This completes the proof of Theorem 4.1. 

For ν  to be real, we obtain the following result. 

Corollary 4.1.  If the function A , pf ∈  from the family 1 1( , , , )d
pR a c S T  , then for an Rν ∈ . 

2 2
1 2 1 1 1 1

1 2 1 12
2 1

1 2 1 1
2

1 2 1 1

| | ( ) ( ) (1 )( 1) ( 1) (1 )( 1) ( 1), for
( 2) ( ) ( )( 2) ( 1) ( )( 2)

| |
| | ( ) ( ) ( )( 2) ( 1) , Otherwise.

( 2) ( ) ( )

 

1) ( 1

p p

d S T c T p a c T p a c
p a d S T p c a d S T p

a a
d S T c d S T p c aT

p a p a c

ν

ν
ν

+ +

 − − + + + − + +
≤ ≤

+ − + + − +
− ≤ 

  − − + +
+  + + + 

     

Putting cos , 1 2 / , 1id pe S p Tφ φ η−= = − = − in theorem (4.1), we get the following result.       
 

Corollary 4.2. If cos
, 1 1

2( , ,1 , 1),ipe
pf R a c

p
φ φ η−

∈ − −  then  

1 2 1 12
2 1 2

1 2 1 1

2( )cos ( ) 2 cos ( )( 2) ( 1)| | max 1, 1 .
( 2) ( ) ( 1) ( 1)

i

p p
p c e p p c aa a

p a p a c

φη φ ν φ ην
−

+ +

 − − + + − ≤ − 
+ + +  

. 

The estimate is sharp. 

Remark 4.1. (i) Upon taking 1 11, and 0d p a cν φ= = = = =  in the Corollary 4.2, 𝑡𝑡he inequality 
coincides with the theorem-3.3 of [8],in addition with above restrictions if we take 0,η =  
then the result will agree with theorem-4 of [19] with 0α = . 
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(ii) Choosing 1 11, 1andd p a c= = =  in Theorem 4.1, we get the result which is an agreement to the 
theorem -2.3 of [6] with 1and 1.τ γ= =  

Theorem 4.2 If the function 1 1( , , , ),d
pf R a c S T∈  and 1 1 0a c≥ > , then 

2
1 22

3 1 2
1 2

| | ( )( )| | .
( 2)( )p p p

d S T ca a a
p a+ + +

 −
− ≤  

+ 
                                                                                              (24) 

 
Proof. Using equation (21), (22) and (23), we get 

2 2
1 1 2 1 12 2

3 1 2 1 3 22
1 1 2 1 1

( ) ( ) 1 2 ( 1)
4 ( ) ( 3)( 1) 2 ( 1)( 2)p p p

d S T c c c ca a a q q q
a a p p a a p+ + +

− + +
− = −

+ + + + +
 

2
1 1 1 12 4

1 2 12 2
1 1 1 1

( 1) 1 2 1 2 ( 1) 1(1 ) .
( 1)( 2) ( 3)( 1) 2 ( 3)( 1) 2 ( 1)( 2) 2

c c c c TT q q q
a p p p a p p a a p

   + + + + +  + − + + −     + + + + + + + + + +      
 

 

Also, from Lemma (2.3), we get 

2
3 1 2p p pa a a+ + +− =  

2 2
1 1 2 1 4 2 2 2 2 2 2 2

1 1 1 1 1 1 1
1 1 2 1

( ) ( )( ) 1 2 2(4 ) (4 ) 2 (4 )(1 | | )
4 ( ) 4( 3)( 1) 2

d S T c c c q q q x q q x q q x z
a a p p a

− +  + − − − + − −  + + +
 

1 4 2 2 2 2
1 1 1 12

1

( 1) 2(4 ) (4 )
( 1)( 2)

c q q q x q x
a p

+  − + − + − + +
 

1 1 4 2 2
1 1 12

1 1

( 1) 1 2 (1 ) (4 )
( 1)( 2) ( 3)( 1) 2 2

c c T q q q x
a p p p a

 + + +  + − + −   + + + + + 
 

2
1 1 4

12
1 1

1 2 ( 1) 1 .
( 3)( 1) 2 ( 1)( 2) 2

c c T q
p p a a p

 + + +  + −   + + + + +    
 

 
For simplicity in the expression, we put 
 

2 2
1 1 2

1 1 2

( ) ( )
4 ( )

d S T c c
a a

α −
= , 1

1

2
4( 3)( 1)( 2)

c
p p a

β +
=

+ + +
, and 1

2
1

( 1) .
4( 1)( 2)

c
a p

+
Γ =

+ +
 

Then by simple calculation, it can be observed that 0 2 .β< Γ < < Γ . Using above notation and triangle 
inequality, we can write 

2
3 1 2| |p p pa a a+ + +− ≤ [ ] 4

1
1| | ( )(8 (1 ))
8

T T qα β − Γ + +


[ ] 2 2
1 1

1 ( )(15 ) (4 )
8

T q q xβ+ − Γ − −  

                                    ( ) ( )}2 2 2 2 2 2
1 1 1 1 1(4 ) (4 ) 2 (4 )(1 ) .q q q x q q xβ β+ + Γ − − + − −                                 (25) 

Since the functions ( )zθ  and ( ) ( )ie z Rφθ φ ∈   belong to the family P , we can take 1 0q >  by which 
generality of the problem is not lost. Taking 1,x v q u= =  in (4.8), we get the function  ( , ) (say)Q u v . 
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[ ] [ ]4 2 21 1( , ) | | ( )(8 (1 )) ( )(15 ) (4 )
8 8

Q u v T T u T u u vα β β= − Γ + + + −Γ − −


 

                                      ( ) ( )}2 2 2 2 2 2(4 ) (4 ) 2 (4 )(1 ) .u u u v u u vβ β+ + Γ − − + − −  

 
We need to find maximum value of ( , )Q u v  in the interval 0 2,u≤ ≤ (by Lemma 2.1) 0 1.v≤ ≤  We can 
see by using the fact 0 2 .β< Γ < < Γ  
 

[ ]2 21| | (4 ) ( )(15 ) 2( ) 4(2 ) 0 (0 2, 0 1).
8

Q u T u v u v u v
v

α β β β∂  = − − Γ − + −Γ + Γ − > ≤ ≤ ≤ ≤ 
∂  

 

So ( , )Q u v  cannot attain its maximum value within 0 2,u≤ ≤ 0 1.v≤ ≤  Moreover, for fixed 𝑢𝑢 ∈ [0,2], 
 

[ ] 4
0 1

1( ) max ( , ) ( ,1) | | ( )(8 (1 ))
8vM u Q u v Q u T T uα β≤ ≤

= = = − Γ + +


 

               [ ] ( )2 2 2 2 21 ( )(15 ) (4 ) (4 ) (4 )
8

T u u u u uβ β + − Γ − − + + Γ − − 


, 

and  

    ( )2 31( ) | | ( ) 2 15 ( )(23 ) 8 .
2

M u T T u T uα β β′   = − Γ + − + −Γ − − Γ   
 

 
Since ( ) 0M u′ > ,  the maximum value occurs at 0, 1.u v= = Therefore 
 

2
1 22

3 1 2
1 2

| | ( )( )| | .
( 2)( )p p p

d S T ca a a
p a+ + +

 −
− ≤  

+ 
 

Taking   cos , 1 2 / , 1id pe S p Tφ φ η−= = − = −  in Theorem (4.2) we get the following result. 
 
Corollary 4.3 
If cos

1 1( , ,1 2 / , 1),ipe
pf R a c pφ φ η

−
∈ − −  then 

2
1 22

3 1 2
1 2

2cos ( )( )| | .
( 2)( )p p p

p ca a a
p a
φ η

+ + +
 −

− ≤  
+ 

                                                                                          (26) 

 
The estimate (4.9) is sharp. 
 
Putting 1 11, 1a p c p ν= + = + +  in Corollary (4.3), we get following result. 

Corollary 4.4.   If , ( , ),pf R ν φ η∈   then 
2

22
3 1 2

2

2cos ( )( 1 )| | .
( 2)( 1)p p p

p pa a a
p p
φ η ν

+ + +
 − + −

− ≤  
+ + 

                                                                               (27) 

The estimate (27) is sharp. 
   
Remark 4.2. 

(i) Choosing 1 11, 1andd p a c= = =    in Theorem 4.2, we get the result which is an agreement to the 
theorem-2.4  [6] with 1and 1,τ γ= =  in addition with above restrictions if we take 1, 1S T= = −  
we get the result obtained by  [19] in theorem-1  with 0α = . 
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(ii) Assign 1 11, 1andd p a c= = =  in Theorem 4.2, we get the result which is an agreement to the 
theorem-2.1 of [7] with 1and 0.τ γ= =  

 

5. Conclusion 

The new generalized subclass , 1 1( , , , )d
p nR a c S T  of the class A ( )p n  that we have introduced using the 

1 1( , )pL a c  convolution operator of Saitoh [11] and the concept of subordination, generalize many well-
known subclasses of analytic functions defined and studied by several authors. The sufficient condition 
for a function A , pf ∈  is in the class 1 1( , , , )d

pR a c S T  is derived in Theorem-3.1 which simplifies the 
results for some other subclasses. Sharp upper bound for the absolute value of the coefficient p ma +  and 
some inclusion results based on the designed subclass are derived in     Theorem-3.2. Fekete-Szego 
problem and sharp upper bound of second Hankel determinate is derived in section-4. Moreover, the 
results obtained which are generalizing other previous results of various authors are mentioned. 
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