Universiti Teknologi MARA

Driver Drowsiness Detection Using Back-propagation Neural Network

Endratno Bin Ibrahim

Thesis submitted in fulfillment of the requirements for Bachelor of Science (Hons) Intelligent System Faculty of Information Technology And Quantitative Science

April 2006

ACKNOWLEDGEMENT

'In the name of Allah, the Compassionate, the Merciful, praise be to Allah, lord of Universe and peace and Prayers be upon His Final Prophet and Messenger.'

First and foremost, I would like to express my highest gratitude to Allah for giving me the opportunity to complete this thesis in time. If not for His consent, I would not have been able to do this task.

I would also like to express my special thanks to my supervisor, Pn. Marina Binti Yusoff, to my thesis coordinator Assoc. Prof. Pn Zaidah Ibrahim, and my course coordinator, En Mohd Zaki Bin Zakaria, for giving me the encouragement and mostly support throughout the duration of this project. I really appreciated their constant suggestions, guidance and insight throughout this research. The most important things are their ability to encourage and motivate me to do the research within a very limited time.

To my beloved family, especially to my parents, I thank them for giving me their blessings, unconditional love and financial support. With no exception, a million of thanks goes to all my friends whom I shared and discuss expertise and experiences until today, many thanks. Finally, to whom I failed to mention, who directly contributed to this project, I thank you all very much.

ABSTRACT

Faces as the primary part of human communication have been a research target in a computer vision over a few decades. This project focuses on the development of Back propagation neural network for driver drowsiness detection based on eyes state (open and close). It uses a CCD camera equipped with an active IR illuminator to acquire images of the driver. Then the images sequence will be process offline to determine the drowsiness. This project will provides the confirmation that back propagation is suitable for this type of system. There are two important phases that were focused in this system development. The phases are pre-processing phases and neural network design phase. Every phase has a several sub processes and the network parameter are the predetermine values in the training process. Several suggestions and recommendations are proposed to enhance the detection presence and performance

Keyword: Artificial Neural Network, Computer Vision, Image processing, Driver drowsiness, Face Recognition.

TABLE OF CONTENT

Content		Page
ACKNO	WLEDGEMENT	ii
ABSTRACT		iii
CONTENTS		iv
LIST OF TABLES		viii
LIST OF	FIGURES	ix
CHAP?	FER 1: INTRODUCTION	
1.1 Introd	1	
1.2 Project Statement		2
1.3 Project Objective		2
1.4 Project Scope		2
1.5 Project Significance		3
1.6 Conclusion		4
CHAPT	TER 2: LITERATURE REVIEW	
2.1 Introduction		5
2.2 Drowsiness		5
2.2.1	Definition	5
2.2.2	How common is drowsy driving	5
2.2.3	The danger of driving while feeling drowsy	6
2.2.4	The risk of drowsy driving crashes	6
2.2.5	The symptom of drowsy driver	7
2.3 Computer Vision		7
2.3.1	Definition	7
2.3.2	Stages of computer vision system.	8
2.4 Digital Image Processing		10
2.4.1 Image acquisition		10
2.4.2	11	

2.4.2.1 Image size normalization	11	
2.4.2.2 Histogram equalization	11	
2.4.2.3 Median filtering	11	
2.4.2.4 Background removal	12	
2.4.2.5 Illumination normalization	12	
2.4.3 Feature Detection		
2.4.3.1 Global Feature	12	
2.4.3.2 Local Feature	13	
2.4.3.3 Relational Feature	13	
2.4.4 Recognition Strategies	14	
2.4.4.1 Classification	15	
2.4.4.2 Matching	15	
2.4.4.3 Feature Indexing	16	
2.5 Artificial Neural Network		
2.5.1 Introduction to Artificial Neural Networks	16	
2.5.2 Types of ANN	17	
2.6 ANN approaches in face detection		
2.6.1 Partially Recurrent Neural Networks (RNN)	20	
2.6.2 Hybrid Neural Networks	20	
2.6.3 Radial Basis Function Neural Networks	21	
2.6.4 Hybrid Supervised/Unsupervised Neural Network	21	
2.6.5 Auto associative Neural Networks	22	
2.7 Eye Tracking	22	
2.8 Conclusion	24	

CHAPTER 3: METHODOLOGY

3.1 Introduction	25
3.2 Project Overview	27
3.3 Knowledge And Image Acquisition	27
3.3.1 Data Acquisition	28
3.3.2 Image Acquisition	29
3.4 Image Processing	29
3.4.1 Image Normalization	29