UNIVERSITI TEKNOLOGI MARA

EFFECT OF MOISTURE CONTAMINATION IN ENGINE OIL LUBRICANT ON YAMAHA OUTBOARD ENGINE PERFORMANCE

SAIFUL AFZAINISHAM BIN SAIFUL AMRAN (2019239654)

Diploma

March 2022

ACKNOWLEDGEMENT

The success and final end of this project necessitated a great deal of direction and assistance from many people, and I consider myself quite fortunate to have received it during the duration of my project. All of what I've accomplished has been possible solely because of their guidance and aid, and I'd like to express my gratitude to them.

Pn. Norhanifah binti Abdul Rahman has my admiration and gratitude for all of her help and advice in ensuring that I completed the assignment successfully. Although she had a busy schedule managing corporate issues, I am immensely grateful to her for offering such wonderful assistance and counsel.

I am grateful for and lucky to have received consistent encouragement, support, and advice from all teaching staff members, which aided in the effective completion of my project work. Also, I'd want to express our heartfelt gratitude to all laboratory personnel for their prompt assistance. I'd like to express my gratitude to a friend who helped me with the task and supported me. I also want to thank my parents, who have always wished for the best for me.

ABSTRACT

Water can exist in several states in lubrication oils and can do quite a bit of damage to valuable assets if left unchecked. The boat lubricants are risky to the increasing of the moisture content because of the environment involving water. Water led to corrosion and increase oxidation since water affects the viscosity and lubricity of lubricants. Premature aging will occur and the lubricants need to be serviced after some time of 100 hours or six months, whichever comes first. This project compares the Fourier Transformed Infrared (FTIR) analysis of the new and used sample of lubricant which Yamalube engine oil 10W-40 from the serviced Yamaha four-stroke outboard engine 115hp. This project aims to determine the moisture content of the Yamalube engine oil 10W-40 in Yamaha four-stroke outboard engine 115Hp and compare the moisture content between new and used ones. The method used in this project is Fourier transformed infrared (FTIR) spectroscopy. The amount of free, dissolved, and emulsified water in a lubricating oil sample may be determined with great accuracy and precision using this method. The finding shows that the moisture content was detected in new and used oil samples. With the presence of water in these oil samples, it is suggested that it may lead to the failure, decrease the oil film strength, rapid flashvaporization and causing erosive wear. The new oil not always clean, its maybe already be contaminant with water. Water might be present in fresh oil as a result of refining, manufacturing, or blending operations, or it can infiltrate during transit, handling, or storage procedures used by the provider. To improve existing data, the recommendations are investigate others factors that can lead to corrosion such as oxidation and come out with others methods that can determine moisture content more precise such as moisture analyzer.

TABLE OF CONTENTS

CONFIRMATION BY SUPERVISOR

Page

ii

AUT	THOR'S	iii			
ABS	iv				
ACŀ	v				
TAE	BLE OF	vi			
LIST	ГOFTA	viii			
LIST	Г OF FI	GURES	ix		
LIST	ГOFAE	BREVIATIONS	X		
СНА	APTER	ONE : INTRODUCTION	1		
1.1	Backg	ground of Study	1		
1.2	Proble	em Statement	2		
1.3	Objec	Objectives			
1.4	Scope of Work		3		
1.5	Signif	ficance of Study	3		
CHA	APTER	TWO : LITERATURE REVIEW	5		
2.1	Engin	ie	5		
	2.1.1	4-Stroke Engine Process	6		
	2.1.2	Engine Power Limitation	7		
2.2	Lubrie	8			
	2.2.1	Definition of Lubricant	8		
	2.2.2	Type of Lubricant	9		
	2.2.3	Evolution of Lubricants	10		
	2.2.4	Lubrication Mechanisms	10		
	2.2.5	Certified Oils	11		
	2.2.6	Yamalube Engine Oil 10W-40	12		
2.3	Contamination		12		
	2.3.1	States of Coexistence	13		
		vi			

	2.3.2	Moisture Content	14
	2.3.3	Oil change schedule	15
	2.3.4	How Moisture Affects Components	15
	2.3.5	How Moisture Affects the Lubricant	16
2.4	Methods		
	2.4.1	FTIR	16
	2.4.2	About Infrared (IR) Spectroscopy	19
	2.4.3	About FT-IR Spectroscopy	20
	2.4.4	The difference between IR and FT-IR	20
СНА	PTER	THREE : METHODOLOGY	21
3.1	Introduction		21
3.2	Flowchart		
3.3	Sample Preparation		22
3.4	Data Analysis		23
CHA	PTER I	FOUR : RESULTS AND DISCUSSION	24
4.1	Introd	uction	24
4.2	FTIR	Analysis	24
4.3	Discu	ssion	25
CHA	PTER I	FIVE : CONCLUSION AND RECOMMENDATIONS	27
5.1	Concl	usions	27
5.2	Recon	nmendations	27
APP	ENDIC	ES	31