

UNIVERSITI TEKNOLOGI MARA

CAWANGAN TERENGGANU

MEC299

EFFECT OF DIFFERENT COOLING WATER FLOW RATES IN CONDENSER ON A STEAM MOTOR POWER PLANT

NUR ALYA AFIQAH BINTI ADNAN

2020475516

SUPERVISOR:

HELMISYAH AHMAD JALALUDIN

ACKNOWLEDGEMENT

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully. And I would like to express my deepest and sincerest gratitude to my supervisor, Sir Helmisyah Ahmad Jalaludin for giving me the guide and opportunity to do this research. He also helps me to carry out the research and to present the research works smoothly. Also, I would like to thank Sir Ahmad Aizayuddin Abdullah as an assistant engineer for his help for me to finish my experiments.

Lastly, I am also grateful for my parents for their love and supports that they have gave to me to complete this research work.

ABSTRACT

Steam motor power plant is important to reduce the greenhouse gas emissions and fuel consumption. Most of the electricity nowadays is produced by steam motor power plant. Condenser remains one of the key components that affects the plant performance. The steam that has used most of its energy leaves the turbine and flows into the condenser. In most of recent search, better cooling system in condenser may increase the efficiency of steam motor power plant. Thus, an experiment will be conducted to determine the effects of different cooling water flow rates on the steam motor power plant by using different loads and to study the effects of condensation rates based on the effect of different water flow rates on the steam motor power plant. The range of the cooling water flow rates are from 1.0 lpm to 2.5 lpm with the interval of 0.5 lpm, meanwhile the range of the loads are from 0 gram to 40 grams with 10 grams interval. As a result, larger flow rates with lower loads are predicted to contribute to increased efficiency of steam motor.

TABLE OF CONTENTS

PAGE

1.0 INTRODUCTION		
	1.1 Overview of Steam	11
	1.2 Background of Study	12
	1.3 Problem Statements	13
	1.4 Objectives	13
	1.5 Scope and Limitations of Study	14
	1.6 Significance and Benefits of Study	14
	1.7 Expected results	15

2.0 LITERATURE	REVIEW	16
2.1 Introducti	ion	
2.1.1	The details of the Rankine cycle	16
2.1.2	Energy Analysis for the Rankine cycle	18
2.1.3	Efficiency of the cycle	21
2.1.4	Effects of condenser in cycle efficiency	22
2.1.5	Flow rates of the cycle	23

3.0 METHODOLOGY	25
3.1 Flow chart	25
3.2 Experimental equipment	26
3.3 Procedure of the experiment	29
GANTT CHART	32

REFERENCES

33