UNIVERSITI TEKNOLOGY MARA

DESIGN AND DEVELOPMENT OF ICE CREAM TOOL CUTTER

MUHAMMAD IRSYAD BIN MOHD MARDI

Diploma

March 2022

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my diploma and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, Sir Matzaini bin Katon.

Finally, this dissertation is dedicated to my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you.

Alhamdulilah.

ABSTRACT

Ice cream potong is an ice cream that form in a cube shape. It is one of famous brand ice cream in Malaysia. Potong means "cut" in Malay, since the ice-creams are well cut from a big portion to the small rectangular ones that been familiar with now. The knife issues started when the efficiency and time saver to cut ice cream potong manually by using a knife to get cube shape were not an effective way. The objective is to produce an ice cream potong tool cutter that can cut the ice cream block more effectively. In hope where the efficiency of cutter tool would increase, and the time saved would be increased. My alternative to solve this problem are to design a simple ice cream potong tool cutter that can work automatically to cut ice cream block. Also, this product can do manually by giving some force at grip holder with pull it down to cut ice cream block. The material that be used to make the blades usually using a stainless steel by the strength and deformation in term of static structural analysis. The design of the knife is used software SolidWorks. For the analysis, simulation for knife is uses SolidWorks software.

TABLE OF CONTENTS

	Page
CONFIRMATION BY SUPEVISOR	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
LIST OF TABLES	ix
CHAPTER ONE: INTRODUCTION	1
1.1 Background of study	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Scope of Work	3
1.5 Significant of Study	4
1.6 Gantt Chart	5
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Current trends	6
2.2.1 Kitchen knife	9
2.2.3 Paring knife	9
2.2.3 Serrated knife	10
2.3 Structural analysis	10
2.3.1 Automated Structural Analysis	11
2.3.2 Analysis of Engineering Structures and Material Behavior	12
2.3 Finite Element Method	13
2.3.1 The Finite Element Method in heat transfer analysis	14

	2.3.2 The Finite Element Method in Engineering: Pergamon International Library of	
	Science, Technology, Engineering and Social Studies	14
	2.4 Static Stress Analysis	16
	2.4.1 Static Stress Analysis of IC Engine Cylinder Head	16
	2.4.2 Finite Element Modelling and Static Stress Analysis of Simple Hooks	17
(CHAPTER THREE: METHODOLOGY	18
	3.1 Introduction	18
	3.2 Flowchart	18
	3.3 Customers requirement	19
	3.4 Product design specification	20
	3.5 Concept selection	22
	3.6 Pugh chart	25
	3.7 Embodiment design	27
	3.7.1 Product architecture	27
	3.7.2 Cluster elements of schematic diagram	27
	3.7.3 Rough geometric layout	28
	3.7.4 Configuration design	28
	3.7.5 Parametric Design	33
(CHAPTER FOUR: RESULTS AND DISCUSSION	34
	4.1 Introduction	34
	4.2 Design of an improvement of ice cream potong tool cutter	34
	4.3 Detailed drawing of components	35
	4.4 Orthographic view for assembly	44
	4.5 Orthographic view for explode	47