UNIVERSITI TEKNOLOGI MARA

DESIGN AND FABRICATE REMOTE CONTROL CONTAINER FOR HOUSEHOLD USAGE

DANISH UMAIR BIN MOHAMAD RIZUDIN

Diploma

March 2022

ACKNOWLEDGEMENT

First and foremost, I want to thank God for providing me with the chance to pursue my diploma and for successfully finishing this long and difficult road. Mrs Ros Atikah binti Abdul Kadir@Che Ismail deserves my gratitude and thanks.

Finally, I dedicate this dissertation to my father and mother for having the vision and desire to educate me. This triumphant work is dedicated to both of you. Alhamdulilah.

ABSTRACT

This project describes a case study of the Design and Fabricate remote control container for household usage. The objective of the design ergonomic remote-control container for household usage. Besides, to fabricate holder or casing for remote control using 3D printing method. Addition, this project study about the dimension of remote holder container that ergonomic and suitable for household usage. In addition, this project examines the types of 3D printing such as Vat Photopolymerization, Sheet Lamination, Power Bed Fusion, Materials Jetting, Materials Extrusion, Directed Energy Deposition and Binder Jet. This project also examines the materials that can be used in 3D printing such as HIP, ABS, PLA, polymer, metal, composite, and others. Thus, the application of 3D printing manufacturing technology that have been used in the industry.

TABLE OF CONTENTS

CONFIRMATION BY SUPERVISOR		2	
DECLARATION		3	
ABSTRACT ACKNOWLEDGEMENT list of figure		4	
		5	
		9	
list o	f table	10	
СНА	APTER ONE	12	
INTI	RODUCTION	12	
1.1	Background of Study	12	
1.3	Objectives	14	
1.4	Scope of Work:	14	
1.5	Significant of Study:	14	
1.6	Expected Result:	15	
CHAPTER TWO		16	
LITE	ERATURE REVIEW	16	
2.1	Introduction.	16	
2.2	3D Printing	16	
2.3	Types of 3D Printing.	19	
2.3.1	Vat Photopolymerization.	19	
2.3.2 Sheet Lamination		20	
2.3.3	Powder Bed Fusion	20	
2.3.4 Materials Jetting		21	
2.3.5 Materials Extrusion.		22	
2.3.6 Directed Energy Deposition.			
2.3.7	2.3.7 Binder Jet		
2.4 Materials Selection			

4.1 INTRODUCTION		
RESULTS AND DISCUSSION		
CHAPTER FOUR		
3.6 Gantt Chart	43	
3.5.1 Process	39	
3.5 3D Printing	39	
3. 4 Final Design Approvement	37	
3.3 Selection Material for 3D Printing	35	
3.2 Design Selection	34	
3.1 Introduction	33	
METHODOLOGY	33	
CHAPTER THREE	33	
2.5.5 Electric and Electronic Industry	32	
2.5.4 Healthcare and Medical Industry	31	
2.5.3 Food Industry	31	
2.5.2 Automotive Industry	30	
2.5.1 Aerospace Industry	29	
2.5 Application of 3D Printing in Manufacturing Technology	29	
2.4.9 Poly Lactic Acid [PLA]	28	
2.4.8 Acrylonitrile Butadiene Stryrene [ABS]	28	
2.4.7 High Impact Polystyrene [HIP]	28	
2.4.6 Specials Materials	27	
2.4.5 Smart Materials	26	
2.4.4 Ceramics	26	
2.4.3 Composite	25	
2.4.2 Metals	24	
2.4.1 Polymers	24	