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Abstract 

 
Screening of prostate cancer (PCa) by measuring prostate cancer antigen has proven beneficial in 

reducing the mortality and progression of prostate cancer. However, its level can be affected if patients 

are taking certain drugs and/or suffering from certain medical conditions, causing a false negative. This 

can lead to PCa being undetected, where when untreated can lead to metastatic prostate cancer (MPC). 

Hence, in this study, genetic differences between PCa and MPC were explored using bioinformatics 

approaches to predict potential biomarkers for MPC. The study was divided into two parts, where the 

first involves feature selection and principal component analysis to differentiate PCa and MPC based 

on mRNA gene expression. Additionally, top 20 mutated genes for MPC were determined using odds 

ratio (OR). In the second phase, a predictive model was built using outcome of the mRNA gene 

expression analysis. The results showed that the mRNA expression of 26 identified genes could 

differentiate between PCa and MPC. This was further corroborated by the predictive model, where a 

sensitivity and specificity of 0.616 and 0.017 respectively was achieved. While importance is placed on 

sensitivity over specificity, further improvements involving more data need to be made to increase the 

specificity rate. Additionally, genes such as PAG24, BOP1 and GRWD1 should be investigated further 

as both potential biomarkers as well as potential pathways in MPC progression, based on further 

protein-protein interaction analysis. OR and protein-protein interaction suggests that androgen 

signalling pathway may crosstalk with NF-κB signalling and breast cancer pathway. This preliminary 

study shows that bioinformatics approaches could aid in understanding MPC, which could lead to the 

discovery of novel targeted therapy and potential biomarkers. 
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1.0 INTRODUCTION 

 

According to the GLOBOCAN 2020 

report by the World Health Organisation 

(WHO), prostate cancer ranked third with 

7.3% in the number of new cancer-related 

cases in 2020 (1). Additionally, 3.8% of 

cancer-related deaths were attributed to 

prostate cancer (1). According to the 

Prostate Cancer Foundation, prostate 

cancer is the most common non-skin cancer 

in America affecting 1 in 8 males. In Asian 

countries, the number of prostate cancer 

cases has been steadily increasing 

throughout the years where initially the 

incidence was low (2).  

Androgens, which can either be 

testosterone or dihydrotestosterone (DHT) 

with the latter being the more abundant, are 

hormones that are responsible for the 

growth and function of the prostate gland3. 

In prostate cancer, the dysregulation of 

androgen signalling pathway leads to 

overproduction of androgens and/or 

overstimulation of androgen receptor, 

leading to the growth of prostate cancer 

cells (3). Hence, the treatment of prostate 

cancer involves androgen deprivation 

therapy (ADT), which suppresses the 

production of androgens or inhibiting 

androgen receptor (AR) (4). Prostate cancer 

is detected through blood test that measures 

the prostate-specific antigen (PSA) level 

where a high level leads to the diagnosis of 

prostate cancer. However, PSA test suffers 

from inaccuracies as its level can be 

affected by drugs and conditions such as 

prostatitis and benign prostate hyperplasia. 

This can lead to a missed diagnosis where 

if not addressed promptly could lead to 

metastatic prostate cancer (MPC), which 

has a low survival rate (4). Detection of 

MPC through imaging such as computed 

tomography (CT), positron-emission 

tomography (PET) and magnetic resonance 

imaging (MRI) is incomplete, further 

complicating the diagnosis of MPC4. 

Similar to primary prostate cancer, MPC is 

also treated with ADT, however, several 

studies have demonstrated that patients on 

long term ADT are at higher risk of stroke 

and vulnerable to cardiovascular adverse 

effects (5,6). These highlights the need to 

understand the genetics of MPC in the 

discovery of novel drugs as well as for 

diagnostic purposes. 

The characteristics of MPC were largely 

unknown until 150 metastatic biopsies were 

analysed through an international, multi-

institutional study. The study unveiled a 

defect in DNA repair mechanism in MPC 

where mutations in DNA repair genes e.g. 

BRCA2, ATM and BRCA1 were observed 

in 23% of the cases (7). These results were 

further corroborated by Pritchard et al., (8) 

with a larger cohort of 692 men. 11.8% of 

the cases exhibited germline mutation I 

DNA repair genes e.g. BRCA2, ATM, 

CHEK2, and BRCA. Furthermore, the 

mutations were not correlated with age or 

family history of prostate cancer (8). 

Several other studies have discovered 

potential genetic alterations in MPC e.g. 

TP53, PTEN and AR (7), however, therapy 

targeting those genes have not yet been 

shown to be clinically beneficial. 

Several studies involving the use of 

computational approaches have been 

employed to identify genes that are altered 

in MPC. Li et al., (9) employed the 

maximum relevance minimum redundancy 

(mRMR) method to discover surrogate 

genes for MPC by analysing microarray 

data of normal, primary prostate cancer and 

MPC tumours. The study identified four 

genes that could differentiate the three 

different phases, which are TUBB6, 

MYEF2, PARM1 and SLC25A22 (9). 

These genes are involved in cell 

communication, hormone-receptor mediated 

signaling, and transcription regulation, 

which may be responsible for the 

development of prostate cancer.  Xue et al., 

(10) performed an integrative analysis of 

transcription factor (TF) and microRNA 

expression profiles by employing Gaussian 

mixture modelling and network pruning. 

The study identified mutually exclusive 

transcriptional drivers, AR, HOXC6 and 

NKX2-2 (10). These gene together 
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dysregulate metastasis-related miRNAs in 

prostate cancer. Additionally, poor clinical 

outcome have been reported from the 

overexpression of TFs (10). Bello et al., 

(11) applied system-based modelling 

approach known as kinome regulatisation 

(KiR), which identified multitargeted 

kinase inhibitors that suppress castration-

resistant prostate cancer (CRPC). The two 

inhibitors identified, PP121 and SC-1 were 

later found to suppress the growth of CRPC 

in vitro and in vivo (11). Hence, the aim of 

this study is to explore the genetic 

differences between MPC and PCa, and 

consequently predict potential biomarkers 

for MPC through bioinformatic approaches 

using data obtained from public databases. 

 

 

 

2.0 Materials and Method 

 

2.1 Design of the study 

 

The design of the study is represented in 

Figure 1 below. The study is divided into 

two phases where the first involves the 

mining of mRNA expression of primary 

and metastatic prostate cancer (PCa and 

MPC respectively) data obtained from 

cBioPortal (12) through principal component 

analysis (PCA) and feature selection. Odds 

ratio was also conducted to analyse 

significantly mutated genes in MPC. The 

second phase of the study involves the 

building of prediction model based on the 

results of the PCA to validate whether 

mRNA gene expression profile can be used 

to differentiate between PCa and MPC.  

 

Figure 1. Design of the study where it is divided into two phases. The first phase involves the 

use of Principle Component Analysis on mRNA gene expression data, and Odds Ratio on 

mutated genes data. The second phase involves the building of a prediction model based on the 

result of mRNA gene expression from the first phase. 
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2.2 Dataset 

 

In this study, the data of prostate cancer 

patients was obtained from the cBioPortal 

database (https://www.cbioportal.org/). 

cBioPortal is an international public 

database that store and distribute functional 

genomic data that was summited by 

research community. In this study, four 

datasets of prostate cancer patient were 

chosen, which are the DKFZ cancer cell 

2018, SU2C/PCF Dream Team PNAS 

2019, MSKCC/DFCI Nature Genetics 

2018, and lastly from the MSKCC JCO 

Precis Oncol 2017. The breakdown of each 

datasets can be found in Table 1. Any 

duplicates were removed.  

 
2.3 Feature selection 

 

In this study, the Tree Based Feature 

Selection Method (TBSM) was employed 

as the feature selection method (17). To 

remove irrelevant or unimportant data, this 

method measures the impurity-based 

feature importance of each variable by 

using the concept of random forest 

algorithm. The degree of importance is 

based on how many samples are able to 

reach nodes against the total number of 

samples (17). The higher degree or 

percentage of feature importance, the 

higher the score. The nodes importance was 

calculated as such: 

 

𝑛𝑖1 = 𝑤1𝐶1 − 𝑤𝑙𝑒𝑓𝑡(1)𝐶𝑙𝑒𝑓𝑡(1) −

 𝑤𝑟𝑖𝑔ℎ𝑡(1)𝐶𝑟𝑖𝑔ℎ𝑡(1)   

Eq. 1 

 

where: 

 

𝑛𝑖1 = the nodes importance of node 1  

𝑤1 = the weighted sample reaching node 1 

𝐶1 indicate the impurity value of node 1. 

𝑙𝑒𝑓𝑡(1) and 𝑟𝑖𝑔ℎ𝑡(1) = branches node in 

the left and the right respectively.  

 

The importance of each feature on a 

decision tree is then calculated as: 

 

𝑓𝑖1 =
∑ 𝑛𝑖11:𝑛𝑜𝑑𝑒 1 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝑛𝑖𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
 Eq. 2 

 

where: 

 

fi1 = importance of feature i  

ni1 = the importance of node 1. 

Nik = the sum importance of all nodes 

 

Next, the value of feature importance is 

normalized to a value between 0 and 1, 

calculated as such: 

 

𝑛𝑜𝑟𝑚𝑓𝑖1 =
𝑓𝑖1

∑ 𝑓𝑖1𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
  Eq. 3 

 

normfii1 represents the normalized feature 

importance for i in tree 1. Next, the average 

of all the trees which is the final feature 

importance will be calculated. It is 

calculated by sum of the feature’s 

importance value on each tree and divided 

by the total number of trees (17): 

 

      𝑅𝐹𝑓𝑖𝑖

∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑖1𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑠𝑠

𝑇
  Eq. 4 

 

RFfii is the importance of feature i 

calculated from all trees in the Random 

Forest model and T is the total number of 

trees.  

 

Each feature will be assigned a value 

between 0 to  1 where a higher value 

indicates higher importance. The relative 

importance of a feature was calculated by 

comparing its value to the highest scoring 

feature as such (17):  

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑖 =
𝑅𝐹𝑓𝑖𝑖

𝑅𝐹𝑓𝑖𝑚𝑎𝑥
 × 100  Eq. 5 

 

Feature with the highest score will be 

assigned a value of 100%. Only features 

with a Relative Feature Importance score of 

30 and above were retained for further 

analysis.  

 

 

 



Ahmad Fajri et al./Int. J. Pharm. Nutraceut. Cosmet. Sci. (2022) Vol 5(1) 48-66 
 

52 
 

 

Table 1. Dataset of MPC and PCa used in the study which includes their origin, data type and 

amount of data. 

 

Dataset 
Number of 

samples 
Type of data used References 

DKFZ cancer cell 

2018 
324 

• Mutated genes 

• mRNA gene expression 13 

SU2C/PCF Dream 

Team PNAS 2019 
444 

• Mutated genes 

• mRNA gene expression 14 

MSKCC/DFCI 

Nature Genetics 

2018 

1013 

• Mutated genes 

 15 

MSKCC JCO 

Precis Oncol 2017 
504 

• Mutated gene 

 16 

 

 

 

2.4 Principal Component Analysis 

 

Principal component analysis (PCA) is a 

method of reducing the dimensionality of 

robust datasets, increasing its 

interpretability while preserving as much 

variability and minimizing information loss 

(18). This statistical technique creates new 

uncorrelated variables or principal 

components, that successively maximize 

variance. The PCA was performed using 

the scikit-learn package through the ‘PCA’ 

function in Python and plotted using the 

ggplot (19) package in RStudio (v1.4).  

Given a data matrix, X, of n × p, where 

n is the number of rows of instances and p 

is the number of features, the principal 

component for each variable, x, is 

calculated as the weighted average of the 

original variables. The matrix containing 

the principal components of the data is 

referred to as matrix Y and can thus be 

calculated as: 

 

           Y =W. X               Eq. 6 

   

where W is a matrix of coefficients that is 

obtained from the calculation of 

covariance, eigenvalues and eigenvector. 

Eigenvalues and eigenvectors are the linear 

algebra concepts that needed to be 

computed from the covariance matrix in 

order to determine the principal 

components of the data (20) : 

 

y ij =w1i x1j +w 2i x 2j+...+w pi x pj     

    Eq. 7 

 

The covariance between two variables, xi 

and xj can be calculated as: 

 

𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗) =
1

𝑛−1
 ∑ (𝑥𝑖 − 𝑥�̅�)(𝑥𝑗 − 𝑥�̅�)𝑛

𝑖=1

     Eq. 8 

 

The eigenvalues and eigenvectors are 

then determined from the covariance 

matrix. The eigenvectors (principal 

components) determine the directions of the 

new feature space, and the eigenvalues 

determine their magnitude.  

 

2.5 Odds ratio 

 

Odds ratio (OR) measures the 

association between exposure and the 

outcome by comparing the odd of the 

outcome occurring depending on the 

presence or absence of certain exposure 
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(21). In this study, the mutated genes were 

represented as the exposure. Meanwhile, 

the outcome was either primary or 

metastatic prostate cancer. The odds ratio 

will then measure the frequency of the 

mutated genes in metastatic prostate cancer 

and primary prostate cancer. Out of 2485 

mutated genes, only the top 20 highest odds 

ratio of mutated genes with a p-value < 0.05 

were retained. OR was calculated as such: 

 

𝑜𝑑𝑑 𝑟𝑎𝑡𝑖𝑜𝑠 =  
𝑎

𝑐 ⁄
𝑏

𝑑 ⁄
  Eq. 9 

 

where: 

 

a = frequency of mutation in metastatic 

prostate cancer 

c = total number of mutations in metastatic 

prostate cancer 

b = frequency of mutation in primary 

prostate cancer 

d = total number of mutations in primary 

prostate cancer 

 

 

2.6  Protein-Protein Interaction 

prediction using STRING 

 

Protein-Protein Interaction (PPI) 

prediction using STRING (https://string-

db.org/) was employed to see whether two 

proteins may interact. STRING measures 

both direct (physical) and indirect 

(functional) interactions between two 

proteins, based on experimental data of 

protein-protein interactions (22).  

A score is provided for each protein-

protein association. The scores represent 

confidence scores, ranging from 0 to 1, 

indicating estimated likelihood that the 

association is biologically significant, 

given the supporting evidence (22). The 

supporting evidence is based on seven 

factors, which are neighbourhood in 

genome, gene fusions, co-occurrence 

across genomes, co-expression, experi-

mental/biochemical data, association in 

curated databases and co-mentioned in 

PubMed abstracts (22). These factors are 

represented by colour coded edges. Based 

on the seven factors, a combined and final 

confidence score is computed. A good 

interaction should not only have a high 

combined score, but also have more than 

one factor contributing to the score.  

 

Predictive model 

 

2.7.1 Training set 

 
The training set here contains the mRNA 

expression of MPC and PCa patients 

containing 26 genes identified in the 

previous phase.  

 

2.7.2 Random Forest classification 

algorithm 

 

Random forest is a technique for 

classification based on an ensemble, or 

forest, of decision tree. As the name 

suggests, a prediction will be made using 

tree-based algorithm method by 

constructing a forest from the production of 

several or large number of trees (known as 

decision trees) (23). The trees were built 

using training sets consisting of multiple 

features or variables for each of the 

instances in the training set. Then, output 

results were produced from the variables of 

the training set of interest. The result was 

obtained by aggregating all the outputs 

from different trees. There are two stages in 

Random Forest which are: (i) random forest 

creation and (ii) prediction from the random 

forest classifier created in the first stage 

(23).  

Firstly, the algorithm will build m 

amount of decision trees. Each of the 

decision trees will be initiated with a single 

node where a number of randomly selected 

samples will serve as the data set. Then, a 

bootstrap sample of n number of variables 

of the training data was drawn and selected 

at random. From the random selected 

subset, the variable that provides the best 

split, measured using the Gini index, will 

split the node into two daughter nodes, 

specifying possible outcomes (23). The tree 
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was further split until a maximum size is 

reached without pruning. Gini index (S) is 

calculated as follows: 

 

Gini (S) = 1- ∑ 𝑃2
𝑗        Eq. 10 

 

Where P is the relative frequency of class j 

in S. Each time, the split then was divided 

into two subsets of S1 and S2 in which gini 

(S) data was divided into: 

Ginisplit (S) = 
𝑛1

𝑛
 gini (S1) + 

𝑛2

𝑛
 gini (S2)

         Eq. 11 

 

This process will repeat until the tree has 

reached a specified number of branches and 

is assigned a terminal leaf node. At the end 

of the tree, class probability will be 

calculated. In this study, m was set at 100, 

and n was set as the square root of total 

number of variables. The outcome was 

calculated as the mean of class probability 

from each decision trees. The algorithm 

was written in Python and using the scikit-

learn package. 

 

2.7.3 Internal validation 

 

5-fold cross validation was used as 

internal validation. The data was separated 

into five different groups called fold. One 

of the folds will be chosen to represent the 

test set, while the rest were combined to 

serve as training set. Next, the predictive 

model will be fitted into the training set, 

tested on the test set and its performance 

will be calculated. This step will be 

repeated until all five folds have served as 

the test set.  

 

2.7.4 Performance measure 

 

The predictive model built by random 

forest algorithm was evaluated based on its 

specificity and sensitivity. Sensitivity 

evaluates the ability of the predictive model 

to predict true positive values. Meanwhile, 

specificity measures the ability of the 

predictive model to predict the true 

negative value. The formula to calculate 

both sensitivity and specificity as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

   

Eq. 12 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

 
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

Eq. 13 

3.0 Results 

 

3.1  PCA profile of mRNA expression 

of PCa and MPC 

 

The mRNA variables were reduced from 

16,384 to 26 using feature selection to 

reduce overfitting, complexity and the 

curse of dimensionality. Table 3 shows the 

summary of the 26 genes used in the PCA. 

The data were then subjected to PCA, 

where PC1 and PC2 were plotted (see 

Figure 2) as it contains the most 

information. 

From Figure 2 and Table 2, several 

observations can be made. Firstly, there is a 

clear separation between MPC and PCa 

from the PCA plot. This suggests that MPC 

and PCa could be differentiated by looking 

at their mRNA expression of the 26 genes 

collectively. Secondly, several genes listed 

in Table 2 are differentially expressed in 

certain malignancies. One of them, BOP1, 

can be linked to PCa. BOP1 is one of the 

important components for synthesis of the 

60S ribosome and maturation of 5.8S and 

20S ribosomal RNAs. Mutation and 

increase of BOP1 expression was 

demonstrated to lead to aggressive prostate 

cancer and reduction in patient overall 

survival (30). Another gene, FAM47E 

promotes the histone methylation by 

localizing arginine methyltransferase 

PRMT5 to chromatin. To date, literature 

support that links it to cancer is currently 

limited. However, a member of its family, 

FAM13C has been shown to be potential 
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prognostic marker in prostate cancer (37). 

Several of the genes are involved in other 

hormone-related cancers such as 

TRAPPC9, PABPC3, PA2G4 and 

NDUFA11, which were linked to breast 

cancer. Thirdly, several of the genes are 

directly or indirectly linked to NF-κB 

signalling pathway, which is involved in 

inflammation, immunity, cell proliferation, 

differentiation and apoptosis. These genes 

include EPN1, TRAPPC9 and RBM23. 

 

 

Table 2: The details of the 26 genes identified through feature selection to construct the PCA 

between PCa and MPC. RFI refers to relative feature importance where a higher value 

indicates a higher importance. A value of 100 indicates that the gene is the most important in 

the group as it had the highest raw feature importance. 

 

Gene Gene name RFI Gene description 

PCDHGA7 
Protocadherin 

Gamma-A7 
100.0 

PCDHGA7 is a neural cadherin-like cell adhesion protein that play a role 

in specific cell-cell connections in the brain. Down regulation of 

PCDHGA7 gene was expressed in patients with colorectal cancer and 
other members of the PCDH families have been found to suppress 

tumours in certain malignancies where they undergo long-range 

epigenetic silencing by hypermethylation (24). 
 

EPN1 Epsin-1 89.21 

Epsins are ubiquitin-binding adaptor proteins where its overexpression 
leads to sustained NF-κB signalling, where in breast cancer leads to 

metastasis and epithelial mesenchymal transition (EMT) (25). Tumour 

growth and progression are reduced in cases of loss of function of this 

gene in certain malignancies (26).  

NBPF10 

Neuroblastoma 

Breakpoint Family 
Member 10 

82.80 

NBPF10 gene is a member of the neuroblastoma breakpoint family 

(NBPF). Altered expression of some gene family members is associated 
with several types of cancer, although its role is not fully understood. 
 

DROSHA 

Drosha 

Ribonuclease III 

 

69.70 

DROSHA plays an important role as a catalyst for the initial processing 

step of microRNA (miRNA) synthesis. Somatic mutations of DROSHA 

have been observed in human patients with kidney cancer where it 

impairs the expression of tumour suppressing miRNAs such as MYCN, 
LIN28 and other oncogenes (27).  

 

PCDHGA11 
Protocadherin 

Gamma-A11 
65.69 

PCDHGA11 is a neural cadherin-like cell adhesion protein that play a 

role in specific cell-cell connections in the brain. Members of the PCDH 

families have been found to suppress tumours in certain malignancies 

where they undergo long-range epigenetic silencing by hypermethylation 
(24). 

PPM1J 
Protein Phosphatase 

1J 
60.56 

PPM1J gene plays a role in the catalytic activity to release phosphate 
from O-phospho-L-seryl-(protein). The function of this gene is not yet 

fully understood. 

SFT2D3 

SFT2 Domain-

Containing Protein 3 

 

52.20 

This gene is involved in the fusion mechanism of transport vesicles that 

forms from the endocytic compartment with the Golgi complex. The 

function of this gene is not yet fully understood.  

TRAPPC9 

Trafficking Protein 

Particle Complex 

Subunit 9 
 

50.31 

This protein plays a role in the transportation of intra-Golgi and tethering 

of Golgi vesicle and also the activation of NF-κB signalling pathway. 

Mutation of this gene has been reported in colon and breast cancer (28). 

ZC3H14 

Zinc Finger CCCH-

Type Containing 14 

 

43.64 

ZC3H14 is a gene that is encoded for a poly(A)-binding protein call the 
Zinc finger CCCH domain-containing protein 14. This protein plays a 

role in the control of the poly(A) tail length, mRNA stability, nuclear 

export, and translation. The role of ZC3H14 in cancer is not yet 

established but a member of its family, ZNF711 are closely associated 
with ER and HER2 expression. This suggests that ZNF711 is a predictor 

of poor prognosis in breast cancer (29).  

BOP1 
BOP1 Ribosomal 

Biogenesis Factor 
43.20 

BOP1 is a gene that is encoded for BOP1 ribosome biogenesis protein. 

This protein is one of the important components for synthesis of the 60S 
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 ribosome and maturation of 5.8S and 20S ribosomal RNAs. A recent study 

has found that mutation of the BOP1 gene that causes an increase in the 

BOP1 expression led to aggressive prostate cancer and reduction in patient 
overall survival (30). 

DYX1C1 
Dynein Axonemal 
Assembly Factor 4 

 

41.56 
This gene plays a role in the neuronal migration during the development 
of cerebral neocortex. Genomic alterations of DNAH family members 

have been reported in certain malignancies (31). 

CXorf38 

Chromosome X 

Open Reading 

Frame 38 protein 

41.13 The function of this gene is not yet fully understood. 

IFT122 

Intraflagellar 

transport protein 

122 

38.41 

IFT122 encodes for a member of the WD repeat protein family, which is 

involved in apoptosis, cell cycle progression, gene regulation and signal 

transduction. It is unknown if this gene is involved in cancer 
pathogenesis. 

ITM2B 
Integral membrane 

protein 2B 
35.33 

This protein plays a role in the processing of amyloid-beta A4 precursor 
protein. It helps to inhibit the amyloid-beta peptide aggregation and fibrils 

deposition. The inhibition of  ITM2B transcription has been found to lead 

to the activation of PI3K/Akt signalling pathway, which accelerates 

tumour growth and worsens the prognosis of lung cancer in mice (32). 

MFSD1 

Major facilitator 

superfamily 
domain-containing 

protein 1 

33.98 

MFSD1 gene is encoded for the Major facilitator superfamily domain-

containing protein 1. No information linking this gene to PCa or MPC 
has been found. 

PABPC3 
Polyadenylate-

binding protein 3 
33.61 

This gene plays a role in the stability and initial translation of mRNA. 

PABPC3 expression have been associated with breast cancer in North 

African population (33). 

PA2G4 
Proliferation-

associated protein 

2G4 

33.48 

This gene plays important role in the ERBB3-regulated signal 

transduction pathway. The ERBB3 is also known as the HERS3 (human 

epidermal growth factor receptor 3). The protein is able to bind and 
interact with the ERBB3 receptor that causes transduction in the 

regulatory signal. Mutation of this gene has been found to have 

association with breast cancer (34). In addition, this gene also plays a role 

either as tumour suppressor or as an oncogene (35). 

PFKL 
ATP-dependent 6-

phosphofructokinase 
33.15 

PFKL helps to catalyse the glycolysis metabolism process by converting 

of D-fructose 6-phosphate to D-fructose 1,6-bisphosphate. The 
degradation of PFKL leads to decreased glycolysis, which proliferation 

and metastasis of hepatocellular carcinoma (HCC) cells (36).  

FAM47E 

Family With 

Sequence Similarity 

47 Member E 

 

32.77 

FAM47E promotes the histone methylation by localizing arginine 

methyltransferase PRMT5 to chromatin. Its role in cancer is not yet 

known. However, a member of its family, FAM13C have been shown to 

be potential prognostic marker in prostate cancer (37). 

NDUFA11 

NADH 
dehydrogenase 

[ubiquinone] 1 alpha 

subcomplex subunit 

11 

32.75 

This protein is a subunit of membrane-bound mitochondrial complex I. It 

plays a role in the mitochondrial electron transport chain. Silencing of 
NDUFA11 was found to increase oxygen consumption rate of breast 

cancer cells, as well downregulate expression of IL-6, IL-8, CXCL1, and 

CXCL3 (38). These lead to tumour metastasis and macrophage 

infiltration.  

RBM23 
Probable RNA-

binding protein 23 
31.90 

RBM23 is a gene encoded for the Probable RNA-binding protein 23 

which is a part of the U2AF-like family of RNA binding proteins. The 
RNA binding protein can act as the pre-mRNA splicing factor and as 

well as a transcription coactivator. In HCC, RBM23was found to 

promote the angiogenesis via the NF-κB signaling pathway (39). 

WBSCR22 

BUD23 rRNA 

methyltransferase 

and ribosome 
maturation factor 

 

31.23 

This gene has many roles such as it involves in the pre-rRNA processing 

steps to form small-subunit rRNA, biogenesis end export of the 40S 

ribosomal subunit, as steroid receptor coactivator, as maintenance of 
open chromatin and lastly as maintenance of demethylation on histone. 

Its role in cancer in unknown. 

SCAF11 

SR-Related CTD 

Associated Factor 

11 
 

30.86 

The role of SCAF11 is unclear. However, a member of its family, SCAF1 

is involved in pre-mRNA splicing and interacts with RNA polymerase II 

polypeptide A, specifically at the CTD domain. Overexpression of 
SCAF1 has been found in breast and ovarian tumours 40. 

CENPI 
Centromere protein 

I 
30.76 

CENPI is a gene that encodes centromere protein I, which is a part of the 

component of the CENPA-NAC (nucleosome-associated) complex. The 

complex is crucial in chromosome segregation and alignment, ensuring 

proper mitotic process. CENPI is overexpressed in colorectal cancer as it 

regulates cell invasion and migration (41). 
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MAP2K2 

Mitogen-Activated 

Protein Kinase 

Kinase 2  

30.75 

MAP2K2 is a part of the MAP kinase kinase family and plays a role in 

the mitogen growth factor signal transduction. Mutation of MEK2 has 

been found to be associated with cancer and drug that limits MAP2K2 
has been developed to treat cancer patient (42)  

NCAPG2 
Condensin-2 

complex subunit G2 
30.36 

NCAPG2 is involved in cell proliferation by regulating the G2/M phase. 
Its overexpression has been reported in Non-Small Cell Lung Carcinoma, 

leading to tumour cell growth (43). 

 

 

 

 
 

Figure 2: The PCA plot of MPC (labelled metastasis) and PCa (labelled primary) based on 

mRNA gene expression of selected 26 genes. 

 

3.2 Odds ratio profile of gene 

mutation of MPC 

 

Table 3 shows the top 20 significantly 

mutated genes in MPC, compared to PCa. 

A high odds ratio indicates that the gene 

mutation is more prominent in MPC than 

PCa. Several observations can be made 

from the OR of MPC. Firstly, AR was the 

second highest significantly mutated gene 

in MPC. Several studies have demonstrated 

that gain-of-function mutations and gene 

amplification of AR take place in adapting 

to the low androgen level (44). 

Additionally, AR co-activators such as 

TRIM24 are also upregulated, where 

collectively these events may restore the 

AR signalling pathway after ADT treatment 

and hence leading to MPC (44).  

 Secondly, several genes associated with 

cancers are also listed in Table 3 such as 

IGSF8, NKX2-5, GLUD2, GRWDI, 

TRIM32 and TSPYL2. However, the 

involvement of these genes in PCa or MPC 

is not yet known. Lastly, similar to the 

previous section, several of the genes can 

be found to be directly or indirectly linked 

to the NF-κB signalling pathway such as 

CD74 and TRIM40.   
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Table 3: Details of the top 20 mutated genes of MPC. 

 

Gene Gene Name 
Odd 

radio 
Gene description 

ZDHHC20P1 

zinc finger 
DHHC-type 

containing 20 

pseudogene 1 

51.82 The function of this gene is not known 

AR 
Androgen 
receptor 

36.31 

Several studies have demonstrated that gain-of-function mutations and gene 

amplification of AR take place in adapting to the low androgen level. 

Additionally, AR co-activators such as TRIM24 are also upregulated, where 
collectively these events may restore the AR signalling pathway after ADT 

treatment and hence leading to MPC (44).  

 

FBXO24 
F-box only 

protein 24 
34.01 

This gene is a part of the F-box protein member family that function in 

phosphorylation-dependent ubiquitination. FBXO24, by mediating 

ubiquitin-dependent proteasomal degradation, is involved in the regulation 
of cell proliferation (45). Its role in cancer pathogenesis is not clear. 

HIST1H3PS1 
H3 Clustered 

Histone 9, 

Pseudogene 

30.77 HIST1H3PS1is a pseudogene where its role is unclear. 

CD74 
CD74 Molecule 

 
24.29 

CD74 is a gene encoded for the HLA class II histocompatibility antigen 

gamma chain. This protein plays important role in the MHC class II 

antigen process by acting as the binding site for cytokine migration 

inhibitory factor (MIF). CD74 was found to be associated with Mucinous 
Lung Adenocarcinoma, and related to NF-κB Signaling and Innate 

Immune System pathways (46). 

CEL 
Carboxyl ester 

lipase protein 
24.29 

This protein plays important role in the absorption and hydrolysis of the 

cholesterol and lipid-soluble vitamin ester. Recent studies have found that 

mutation of this gene in pancreatic disease (47).  

IGSF8 

Immunoglobulin 

superfamily 
member 8 

protein 

24.29 

This protein plays many roles such as to regulate proliferation and 

differentiation of keratinocytes, cell motility, and the neurite outgrowth 

and maintenance of the neural network. IGSF8 may negatively regulate 
TGF-β signaling which can lead to invasion and metastasis of cancer cells 

(48). 

MAMDC4 

Apical 

endosomal 

glycoprotein 

24.29 
This protein plays a role in the managing the receptors and ligand selective 

transport on polarised epithelial. Its role in cancer is unknown.  

MICF 

MHC Class I 

Polypeptide-

Related 
Sequence F 

(Pseudogene) 

24.29 MICF is a pseudogene and its function is not known. 

NKX2-5 
Homeobox 

protein Nkx-2.5 
24.29 

This protein plays an important function in the heart and spleen 

development and few studies have found that mutation of this gene is 

associated with heart disease. NKX2.5 has been found to be expressed in 

several malignancies such as ovarian yolk sac,  papillary thyroid 
carcinoma, skin squamous cell carcinoma tumor and pediatric acute 

lymphoblastic leukemia (49).  

GLUD2 

Glutamate 

dehydrogenase 

2 

22.67 

It plays important role in the recycling of the glutamate neurotransmitter. 

A study has found that mutation of the gene has been expressed in cancer 

patients and other human disorders (50). 

S1PR3 

Sphingosine 1-

phosphate 
receptor 3 

22.67 

This protein might play a role in the cell proliferation and help in the 

suppression of apoptosis.  

KRTAP13-3 
keratin-

associated 

protein 13-3 

21.05 

KRTAP13-3 can be found in the hair cortex, forming a rigid and resistant 
hair shaft. The role of KRTAP13-3 in cancer is unknown. However, a 

member of its family, KRTAP13-2 was found to be significantly 

overexpressed in prostate cancer through bioinformatics approaches (51). 

GRWD1 

Glutamate-rich 

WD repeat-

containing 
protein 1 

21.05 

It plays a role in the ribosome biogenesis and histone methylation. A 

recent study has found that overexpression of this gene increases the risk 

of oncogenesis (52). 

RP11-
386P4.1 

Antisense 
RP11-386P4.1 

21.05 
RP11-386P4.1 is an antisense gene. No further information is currently 
available 
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TRIM32 
Tripartite Motif 

containing 32 
21.05 

This protein is a member of the tripartite Motif (TRIM) family that plays 

many roles that include differentiation, muscle physiology and 

regeneration, and tumour suppression. A study has found out the mutation 
of this gene has an association with hepatocarcinogenesis (53). 

TSPYL2 
Testis-specific 
Y-encoded-like 

protein 2 

21.05 

This gene plays a role in modulating the gene expression and inhibiting 
cell proliferation. In addition, a study found that the mutation of this gene 

is associated with oncogenesis by acting as a proto-oncogene and a tumour 

suppressor gene (54). 

TRIM40 
Tripartite Motif 

Containing 40 
20.64 

TRIM40 is a member of the TRIM family. This protein plays important role 

in the innate response. TRIM40 was found to inhibit NF-κB activity via 

neddylation of IKKγ, which prevents inflammation-associated 
carcinogenesis in the gastrointestinal tract (55). 

ACAD8 

Acyl-CoA 
Dehydrogenase 

Family Member 

8 

19.43 
ACAD8 plays a role in catalysing the metabolism of dehydrogenation of 

acyl-CoA derivative.  

C16orf71 

Dynein 

Axonemal 

Assembly 

Factor 8 protein 

19.43 
This protein is required for the deployment of outer dynein arm to 

axoneme in ciliated cells. Its role in cancer is not known.  

 

 

 

3.3 PPI predictions of all genes 

identified  

 

The result of the PPI can be seen in 

Figure 3 when all 26 genes from the mRNA 

expression and 20 top mutated genes were 

analysed. Two main interactions can be 

seen from Figure 3 where the first involved 

AR, PAG24, BOP1 and GRWD1. AR is 

connected to PAG24 whereas potential 

interaction exists between PAG24, BOP1 

and GRWD1. PAG24 is a corepressor of 

AR and regulated by ERBB3 ligand 

neuregulin-1/heregulin (HRG). Over 300 

coregulator of AR have been identified and 

they can either be a co-activator or co-

repressor of AR. The coregulator can 

modify AR enzymatically and other 

components such as transcriptional 

proteins, histones or other coregulators. 

These can lead to the initiation of cellular 

processes such as invasion and 

proliferation, which drive tumour 

progression. BOP1 and GRWD1 genes 

have a similar function where they play a 

role in ribosomal biosynthesis. Vellky et al., 

(30) studied the expression of BOP1 in 

different stages of PCa and found that it is 

overexpressed in MPC and recurrent PCa. 

Additionally, the expression was inversely 

correlated with overall survival. 

Knockdown of BOP1 showed a decrease in 

proliferation and motility. The knockdown 

of GRWD1 also inhibits cell proliferation, 

invasion and migration, and induced cell 

cycle arrest but in colon carcinoma (56).  

The second interaction from Figure 3 

involves NBPF10, PABPC3 and ZC3H14. 

Both PABPC3 and ZC3H14 have similar 

function, which is to control and maintain 

the stability of mRNA strand. 

PABPC3 expression has been associated 

with breast cancer in North African 

population (57). The role of ZC3H14 in 

cancer is not yet established but a member 

of its family, ZNF711 has been shown to be 

closely associated with ER and HER2 

expression. This suggests that ZNF711 is a 

predictor of poor prognosis in breast cancer 

(29). NBPF10 is a member of the 

neuroblastoma breakpoint family (NBPF). 

Altered expression of NBPF family 

members has been associated with several 

types of cancer, although its role is not fully 

understood. 
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Figure 3: Protein-Protein Interaction of genes identified in this study. For purpose of clarity, 

only genes that were connected to another gene were shown here. Abbreviations: NBPF10: 

Neuroblastoma Breakpoint Family Member 10; PABPC3: Polyadenylate-binding protein 3; 

ZC3H14: Zinc Finger CCCH-Type Containing 14; AR: Androgen Receptor; PA2G4: 

Proliferation-associated protein 2G4; BOP1: BOP1 Ribosomal Biogenesis Factor; GRWD1: 

Glutamate-rich WD repeat-containing protein 1 

 

3.4  Predictive model based on mRNA 

gene expression 

 

Table 4 shows the internal validation of 

the predictive model built using the mRNA 

expression of the 26 genes previously 

mentioned between PCa and MPC patients. 

The model showed very low specificity 

(0.017) and good sensitivity (0.616). The 

predictive model generated 162 true 

positive (TP) results which means that 162 

MPC patients were correctly identified. The 

predictive model was also only able to 

correctly identify 2 PCa patients which is 

the true negative result (TN). While 

importance is placed on sensitivity over 

specificity, further improvements involving 

more data needs to be made to increase the 

specificity rate. 

 

3.5 Decision tree of mRNA gene 

expression 

 

Figure 4 shows an example of a single 

decision tree in a random forest. Note that 

this is only an example of single decision 

tree, and a random forest contains hundreds 

of predictive trees (this is set at 100 in the 

current model). Here, the gene BOP1 is at 

the root node (uppermost node) of the 

decision tree, which is the most important 

feature for that decision tree. Gini value 

indicates probability of misclassifying an 

instance and a lower value indicates a better 

split. Value indicates the number of data 

sampled at particular node. This predictive 

tree differentiates between MPC and PCa 

based on the BOP1 expression. If the z-

score of BOP1 is equal or less than 6.84, it 

will be classified as primary prostate 

cancer. If the BOP1 expression is higher 

than 6.84, it will be classified as metastatic 

prostate cancer. As both nodes have a value 

of 0, it is a terminal node.  

 

4.0 Discussion 

 

Based on the result of this study, a few 

key findings can be further discussed. 

Firstly, mRNA gene expression of 26 genes 

identified through feature selection can be 

used to differentiate between PCa and 

MPC. This is evident from the clear 

separation observed in the PCA as well as 

good sensitivity in the prediction model. 

The results of the prediction model should 

be further improved by incorporating more 

data and externally validated in order to 

provide a clearer picture on whether a 

predictive model would be feasible in the 

future as a diagnostic tool.  



Ahmad Fajri et al./Int. J. Pharm. Nutraceut. Cosmet. Sci. (2022) Vol 5(1) 48-66 
 

61 
 

Table 4: Cross validation results of the predictive model of mRNA gene expression between 

PCa and MPC. Abbreviation: TP: True Positive; FP: False Positive; TN: True Negative; FN: 

False Positive 

TP FP TN FN Sensitivity Specificity 

162 115 2 101 0.616 0.017 

 
 
 

 

 
 

 

Figure 4: One of the decision trees of the random forest generated in the study. Here, the 

most important feature is the gene BOP1. Primary refers to PCa and Metastasis refers to 

MPC. 

 

Secondly, this study highlights potential 

pathway of MPC involving the mutation of 

AR, which may be driven by coactivators 

such as PAG24. PAG24 is an established 

corepressor of AR, however, its involvement in 

the pathogenesis of PCa and MPC has not 

been studied. Several coregulators of AR 

have been well studied such as SRC1-3 (58, 

59), These proteins bind to the amino-terminal 

domain (NTD) of AR, thereby prompting its 

transactivation directly through histone 

acetyltansferase activity and indirectly 

through recruitment of secondary 

coactivators to stimulate chromatin re-

modelling (59). Several small molecule 

inhibitors (60) as well as peptides (61) have 

been developed to target AR coregulators 

for CPRC. Hence, PAG24 could be a 

potential target for MPC and future studies 

should investigate this. BOP1and GRWD1 

were predicted to interact with PAG24 

where the former is overexpressed in 

different stages of PCa. The expression of 

GRWD1 has not been analysed in PCa, but 

it is overexpressed in colon carcinoma. The 

knockdown of both genes was shown to 

reduce the expression of cancer phenotypes 

such as cell proliferation, migration and 

invasion.  

Thirdly, the result of this study suggests 

that a potential crosstalk may exist between 

androgen and NF-κB signalling pathways. 

This is due to several genes from Tables 2 

and 3 being found to directly or indirectly 

affecting the NF-κB signalling pathway 

such as TRIM40, EPN1 and RBM23. NF-
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κB signalling pathway is involved in 

inflammation, immunity, cell proliferation, 

differentiation and apoptosis. The pathway 

is altered in both hematopoietic and solid 

malignancies, which promotes the 

proliferation and survival of tumour cells. 

Malinen et al., (62) have demonstrated that 

simultaneous pro-inflammatory and 

androgen signalling are able to significantly 

reprogram NF-κB and AR cistromes. 

Modulation of both cistromes may lead to 

the progression of PCa.  TRIM40 is a 

member of the TRIM family and plays an 

important role in the innate response. 

TRIM40 was found to inhibit NF-κB 

activity via neddylation of IKKγ, which 

prevents inflammation-associated carcino-

genesis in the gastrointestinal tract (55). 

While dysregulation of AR signalling is the 

initial driver of PCa, the pathway does not 

function in isolation. Crosstalk between 

androgen signalling and other pathways has 

been demonstrated to be a potential avenue 

that drives PCa progression. Several 

intracellular kinases such as SRC, MAPK, 

PI3K/AKT and ERK1/2 are downstream 

regulators of nongenomic AR signalling. 

This mediates a proliferation response and 

potentially driving PCa progression. 

Furthermore, several cell surface receptors 

such as interleukin (IL)-6, IL-8, EGFR, 

IGF-1 and HER2/NEU were implicated in 

the cross talk with AR to either sensitize AR 

at sub-physiological androgen concentrations 

or drive ligand independent signalling. One 

of the surface receptors mentioned, HER2, 

is implicated in breast cancer where it may 

be overexpressed leading to proliferation of 

cancer cells. Several genes in Tables 2 and 

3 have been connected to breast cancer such 

as PABPC3 and PA2G4. The similarities 

between breast and prostate cancer have 

been explored where it has been shown that 

males who have female family members 

with a history of breast cancer are at a 

higher chance of developing prostate 

cancer. Follow-up studies have shown that 

both cancers share the same mutations such 

as BRCA1, and BRCA2. Recently, 

Olaparib which was originally prescribed 

for breast cancer has been approved as 

treatment for prostate cancer. Hence, the 

genes PABPC3 and PA2G4 should be 

further validated and the similarities 

between the two cancers should be further 

explored.  

 

5.0 Conclusion 

 

In this study, unsupervised and 

supervised machine learning methods were 

employed to differentiate the genetic 

landscape between PCa and MPC. Several 

findings can be deduced, which were: (i) 

mRNA expression can be used to 

differentiate between PCa and MPC, (ii) the 

AR-PAG24-BOP1- GRWD1 axis should 

be investigated further as both potential 

biomarkers and as well as potential 

pathways in MPC progression and (iii) 

androgen signalling pathway may crosstalk 

with NF-κB signalling pathway and breast 

cancer pathway. Future studies should 

include experimental validation of the 

genes identified here, as well as using more 

data in the predictive model. One limitation 

of this study is that a general mutation 

analysis using odds ratio was performed. A 

detailed analysis incorporating the type of 

mutation as well as its location would 

provide more information. Nevertheless, as 

this is a preliminary study, the results 

shown were corroborated by scientific 

literature and could serve as the foundation 

for future studies.    
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